Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.127

Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception  

Choi, Seung-In (Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine)
Hwang, Sun Wook (Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine)
Publication Information
Biomolecules & Therapeutics / v.26, no.3, 2018 , pp. 255-267 More about this Journal
Abstract
Inflammation is one of the main causes of pathologic pain. Knowledge of the molecular links between inflammatory signals and pain-mediating neuronal signals is essential for understanding the mechanisms behind pain exacerbation. Some inflammatory mediators directly modulate the excitability of pain-mediating neurons by contacting the receptor molecules expressed in those neurons. For decades, many discoveries have accumulated regarding intraneuronal signals from receptor activation through electrical depolarization for bradykinin, a major inflammatory mediator that is able to both excite and sensitize pain-mediating nociceptor neurons. Here, we focus on the final effectors of depolarization, the neuronal ion channels, whose functionalities are specifically affected by bradykinin stimulation. Particular G-protein coupled signaling cascades specialized for each specific depolarizer ion channels are summarized. Some of these ion channels not only serve as downstream effectors but also play critical roles in relaying specific pain modalities such as thermal or mechanical pain. Accordingly, specific pain phenotypes altered by bradykinin stimulation are also discussed. Some members of the effector ion channels are both activated and sensitized by bradykinin-induced neuronal signaling, while others only sensitized or inhibited, which are also introduced. The present overview of the effect of bradykinin on nociceptor neuronal excitability at the molecular level may contribute to better understanding of an important aspect of inflammatory pain and help future design of further research on the components involved and pain modulating strategies.
Keywords
Bradykinin; Pain; Nociceptor neuron; Ion channel; Depolarization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cesare, P., Dekker, L. V., Sardini, A., Parker, P. J. and McNaughton, P. A. (1999) Specific involvement of PKC-${\varepsilon}$ in sensitization of the neuronal response to painful heat. Neuron 23, 617-624.   DOI
2 Cesare, P. and McNaughton, P. (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl. Acad. Sci. U.S.A. 93, 15435-15439.   DOI
3 Chahl, L. A. and Iggo, A. (1977) The effects of bradykinin and prostaglandin E1 on rat cutaneous afferent nerve activity. Br. J. Pharmacol. 59, 343-347.   DOI
4 Choi, S. I., Yoo, S., Lim, J. Y. and Hwang, S. W. (2014) Are sensory TRP channels biological alarms for lipid peroxidation? Int. J. Mol. Sci. 15, 16430-16457.   DOI
5 Chuang, H.-h., Prescott, E. D., Kong, H., Shields, S., Jordt, S.-E., Basbaum, A. I., Chao, M. V. and Julius, D. (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns (4, 5) P2- mediated inhibition. Nature 411, 957-962.   DOI
6 Cordoba-Rodriguez, R., Moore, K. A., Kao, J. P. and Weinreich, D. (1999) Calcium regulation of a slow post-spike hyperpolarization in vagal afferent neurons. Proc. Natl. Acad. Sci. U.S.A. 96, 7650- 7657.   DOI
7 Costa, R., Bicca, M. A., Manjavachi, M. N., Segat, G. C., Dias, F. C., Fernandes, E. S. and Calixto, J. B. (2018) Kinin receptors sensitize TRPV4 channel and induce mechanical hyperalgesia: relevance to paclitaxel-induced peripheral neuropathy in mice. Mol. Neurobiol. 55, 2150-2161.   DOI
8 Costello, A. and Hargreaves, K. (1989) Suppression of carrageenaninduced hyperalgesia, hyperthermia and edema by a bradykinin antagonist. Eur. J. Pharmacol. 171, 259-263.   DOI
9 Gabra, B. H., Benrezzak, O., Pheng, L.-H., Duta, D., Daull, P., Sirois, P., Nantel, F. and Battistini, B. (2005a) Inhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worchester rats: efficacy of a selective bradykinin B1 receptor antagonist. J. Neuropathol. Exp. Neurol. 64, 782-789.   DOI
10 Gabra, B. H., Merino, V. F., Bader, M., Pesquero, J. B. and Sirois, P. (2005b) Absence of diabetic hyperalgesia in bradykinin B1 receptor- knockout mice. Regul. Pept. 127, 245-248.   DOI
11 Gabra, B. H. and Sirois, P. (2002) Role of bradykinin B 1 receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice. Eur. J. Pharmacol. 457, 115-124.   DOI
12 Gabra, B. H. and Sirois, P. (2003a) Beneficial effect of chronic treatment with the selective bradykinin B 1 receptor antagonists, R-715 and R-954, in attenuating streptozotocin-diabetic thermal hyperalgesia in mice. Peptides 24, 1131-1139.   DOI
13 Zhang, X., Li, L. and McNaughton, P. A. (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59, 450-461.   DOI
14 Zylka, M. J., Rice, F. L. and Anderson, D. J. (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17-25.   DOI
15 Tang, H.-B., Inoue, A., Oshita, K., Hirate, K. and Nakata, Y. (2005) Zaltoprofen inhibits bradykinin-induced responses by blocking the activation of second messenger signaling cascades in rat dorsal root ganglion cells. Neuropharmacology 48, 1035-1042.   DOI
16 Price, T. J., Cervero, F., Gold, M. S., Hammond, D. L. and Prescott, S. A. (2009) Chloride regulation in the pain pathway. Brain Res. Rev. 60, 149-170.   DOI
17 Qin, C., Farber, J. P., Miller, K. E. and Foreman, R. D. (2006) Responses of thoracic spinal neurons to activation and desensitization of cardiac TRPV1-containing afferents in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1700-R1707.   DOI
18 Quintao, N. L., Passos, G. F., Medeiros, R., Paszcuk, A. F., Motta, F. L., Pesquero, J. B., Campos, M. M. and Calixto, J. B. (2008) Neuropathic pain-like behavior after brachial plexus avulsion in mice: the relevance of kinin B1 and B2 receptors. J. Neurosci. 28, 2856- 2863.   DOI
19 Crandall, M., Kwash, J., Yu, W. and White, G. (2002) Activation of protein kinase C sensitizes human VR1 to capsaicin and to moderate decreases in pH at physiological temperatures in Xenopus oocytes. Pain 98, 109-117.   DOI
20 Taiwo, Y. O. and Levine, J. D. (1988) Characterization of the arachidonic acid metabolites mediating bradykinin and noradrenaline hyperalgesia. Brain Res. 458, 402-406.   DOI
21 Tang, H.-B., Inoue, A., Oshita, K. and Nakata, Y. (2004) Sensitization of vanilloid receptor 1 induced by bradykinin via the activation of second messenger signaling cascades in rat primary afferent neurons. Eur. J. Pharmacol. 498, 37-43.   DOI
22 Tang, H. B., Inoue, A., Iwasa, M., Hide, I. and Nakata, Y. (2006) Substance P release evoked by capsaicin or potassium from rat cultured dorsal root ganglion neurons is conversely modulated with bradykinin. J. Neurochem. 97, 1412-1418.   DOI
23 Thayer, S. A., Perney, T. M. and Miller, R. J. (1988) Regulation of calcium homeostasis in sensory neurons by bradykinin. J. Neurosci. 8, 4089-4097.   DOI
24 Vasko, M., Campbell, W. and Waite, K. (1994) Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture. J. Neurosci. 14, 4987-4997.   DOI
25 Vaughn, A. H. and Gold, M. S. (2010) Ionic mechanisms underlying inflammatory mediator-induced sensitization of dural afferents. J. Neurosci. 30, 7878-7888.   DOI
26 Hong, Y. and Abbott, F. (1994) Behavioural effects of intraplantar injection of inflammatory mediators in the rat. Neuroscience 63, 827- 836.   DOI
27 Guo, Z.-L., Symons, J. D. and Longhurst, J. C. (1999) Activation of visceral afferents by bradykinin and ischemia: independent roles of PKC and prostaglandins. Am. J. Physiol. 276, H1884-H1891.
28 Haake, B., Liang, Y. and Reeh, P. (1996) Bradykinin effects and receptor subtypes in rat cutaneous nociceptors, in vitro. Pflugers Arch. 431, R15.
29 Hinman, A., Chuang, H.-h., Bautista, D. M. and Julius, D. (2006) TRP channel activation by reversible covalent modification. Proc. Natl. Acad. Sci. U.S.A. 103, 19564-19568.   DOI
30 Hwang, S. W., Cho, H., Kwak, J., Lee, S.-Y., Kang, C.-J., Jung, J., Cho, S., Min, K. H., Suh, Y.-G. and Kim, D. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. U.S.A. 97, 6155- 6160.   DOI
31 Ikeda, Y., Ueno, A., Naraba, H. and Oh-ishi, S. (2001a) Evidence for bradykinin mediation of carrageenin-induced inflammatory pain: a study using kininogen-deficient Brown Norway Katholiek rats. Biochem. Pharmacol. 61, 911-914.   DOI
32 Ikeda, Y., Ueno, A., Naraba, H. and Oh-ishi, S. (2001b) Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. Life Sci. 69, 2911-2919.   DOI
33 Inoue, A., Iwasa, M., Nishikura, Y., Ogawa, S., Nakasuka, A. and Nakata, Y. (2006) The long-term exposure of rat cultured dorsal root ganglion cells to bradykinin induced the release of prostaglandin E2 by the activation of cyclooxygenase-2. Neurosci. Lett. 401, 242- 247.   DOI
34 Ferreira, J., Campos, M. M., Pesquero, J. B., Araujo, R. C., Bader, M. and Calixto, J. B. (2001) Evidence for the participation of kinins in Freund's adjuvant-induced inflammatory and nociceptive responses in kinin B 1 and B 2 receptor knockout mice. Neuropharmacology 41, 1006-1012.   DOI
35 Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J. B. and McNaughton, P. A. (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol. 534, 813-825.   DOI
36 Taiwo, Y., Heller, P. and Levine, J. (1990) Characterization of distinct phospholipases mediating bradykinin and noradrenaline hyperalgesia. Neuroscience 39, 523-531.   DOI
37 Dray, A., Patel, I., Perkins, M. and Rueff, A. (1992) Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br. J. Pharmacol. 107, 1129-1134.   DOI
38 Dubin, A. E., Schmidt, M., Mathur, J., Petrus, M. J., Xiao, B., Coste, B. and Patapoutian, A. (2012) Inflammatory signals enhance piezo2- mediated mechanosensitive currents. Cell Rep. 2, 511-517.   DOI
39 Ferreira, J., Beirith, A., Mori, M. A., Araujo, R. C., Bader, M., Pesquero, J. B. and Calixto, J. B. (2005) Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice. J. Neurosci. 25, 2405-2412.   DOI
40 Ferreira, J., Da Silva, G. L. and Calixto, J. B. (2004) Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br. J. Pharmacol. 141, 787-794.   DOI
41 Ferreira, S., Lorenzetti, B., Cunha, F. and Poole, S. (1993a) Bradykinin release of TNF-${\alpha}$ plays a key role in the development of inflammatory hyperalgesia. Agents Actions 38, C7-C9.   DOI
42 Lang, E., Novak, A., Reeh, P. and Handwerker, H. (1990) Chemosensitivity of fine afferents from rat skin in vitro. J. Neurophysiol. 63, 887-901.   DOI
43 Jackson, J. G., Usachev, Y. M. and Thayer, S. A. (2007) Bradykinininduced nuclear factor of activated T-cells-dependent transcription in rat dorsal root ganglion neurons. Mol. Pharmacol. 72, 303-310.   DOI
44 Kumazawa, T., Mizumura, K., Minagawa, M. and Tsujii, Y. (1991) Sensitizing effects of bradykinin on the heat responses of the visceral nociceptor. J. Neurophysiol. 66, 1819-1824.   DOI
45 Kwan, K. Y., Allchorne, A. J., Vollrath, M. A., Christensen, A. P., Zhang, D.-S., Woolf, C. J. and Corey, D. P. (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277-289.   DOI
46 Kwan, K. Y., Glazer, J. M., Corey, D. P., Rice, F. L. and Stucky, C. L. (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J. Neurosci. 29, 4808-4819.   DOI
47 Labrakakis, C., Tong, C. K., Weissman, T., Torsney, C. and MacDermott, A. B. (2003) Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat. J. Physiol. 549, 131-142.   DOI
48 Lee, M. G., MacGlashan, D. W. and Undem, B. J. (2005a) Role of chloride channels in bradykinin-induced guinea pig airway vagal C-+fibre activation. J. Physiol. 566, 205-212.   DOI
49 Lee, S.-Y., Lee, J.-H., Kang, K. K., Hwang, S.-Y., Choi, K. D. and Oh, U. (2005b) Sensitization of vanilloid receptor involves an increase in the phosphorylated form of the channel. Arch. Pharm. Res. 28, 405-412.   DOI
50 Ferreira, S., Lorenzetti, B. and Poole, S. (1993b) Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br. J. Pharmacol. 110, 1227-1231.   DOI
51 Fischer, M. J., Balasuriya, D., Jeggle, P., Goetze, T. A., McNaughton, P. A., Reeh, P. W. and Edwardson, J. M. (2014) Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Arch. 466, 2229- 2241.   DOI
52 Fischer, M. J. and McNaughton, P. A. (2014) How anchoring proteins shape pain. Pharmacol. Ther. 143, 316-322.   DOI
53 Weinreich, D. and Wonderlin, W. (1987) Inhibition of calcium-dependent spike after-hyperpolarization increases excitability of rabbit visceral sensory neurones. J. Physiol. 394, 415-427.   DOI
54 Weng, H.-J., Patel, K. N., Jeske, N. A., Bierbower, S. M., Zou, W., Tiwari, V., Zheng, Q., Tang, Z., Mo, G. C. and Wang, Y. (2015) Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. Neuron 85, 833-846.   DOI
55 Whalley, E., Clegg, S., Stewart, J. and Vavrek, R. (1987) The effect of kinin agonists and antagonists on the pain response of the human blister base. Naunyn Schmiedebergs Arch. Pharmacol. 336, 652-655.   DOI
56 Wu, Z.-Z. and Pan, H.-L. (2007) Role of TRPV1 and intracellular $Ca^{2+}$ in excitation of cardiac sensory neurons by bradykinin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R276-R283.   DOI
57 Yamaguchi-Sase, S., Hayashi, I., Okamoto, H., Nara, Y., Matsuzaki, S., Hoka, S. and Majima, M. (2003) Amelioration of hyperalgesia by kinin receptor antagonists or kininogen deficiency in chronic constriction nerve injury in rats. Inflamm. Res. 52, 164-169.   DOI
58 Cunha, T. M., Verri, W. A., Fukada, S. Y., Guerrero, A. T., Santodomingo- Garzon, T., Poole, S., Parada, C. A., Ferreira, S. H. and Cunha, F. Q. (2007) TNF-${\alpha}$ and IL-1${\beta}$ mediate inflammatory hypernociception in mice triggered by B 1 but not B 2 kinin receptor. Eur. J. Pharmacol. 573, 221-229.   DOI
59 Lee, B., Cho, H., Jung, J., Yang, Y. D., Yang, D. J. and Oh, U. (2014). Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol. Pain 10, 5.
60 Lembeck, F. and Juan, H. (1974) Interaction of prostaglandins and indomethacin with algesic substances. Naunyn Schmiedebergs Arch. Pharmacol. 285, 301-313.   DOI
61 Dai, Y., Wang, S., Tominaga, M., Yamamoto, S., Fukuoka, T., Higashi, T., Kobayashi, K., Obata, K., Yamanaka, H. and Noguchi, K. (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Invest. 117, 1979-1987.   DOI
62 De Campos, R., Henriques, M. and Calixto, J. (1998) Systemic treatment with Mycobacterium bovis bacillus calmette-guerin (BCG) potentiates kinin B 1 receptor agonist-induced nociception and oedema formation in the formalin test in mice. Neuropeptides 32, 393-403.   DOI
63 de Oliveira Fusaro, M. C. G., Pelegrini-da-Silva, A., Araldi, D., Parada, C. A. and Tambeli, C. H. (2010) P2X3 and P2X2/3 receptors mediate mechanical hyperalgesia induced by bradykinin, but not by proinflammatory cytokines, PGE 2 or dopamine. Eur. J. Pharmacol. 649, 177-182.   DOI
64 Delmas, P. and Brown, D. A. (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6, 850- 862.   DOI
65 Macpherson, L. J., Dubin, A. E., Evans, M. J., Marr, F., Schultz, P. G., Cravatt, B. F. and Patapoutian, A. (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541-545.   DOI
66 Yanaga, F., Hirata, M. and Koga, T. (1991) Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim. Biophys. Acta 1094, 139-146.   DOI
67 Yu, S. and Ouyang, A. (2009) TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G255-G265.   DOI
68 Zahner, M. R., Li, D. P., Chen, S. R. and Pan, H. L. (2003) Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J. Physiol. 551, 515-523.   DOI
69 Gabra, B. H. and Sirois, P. (2003b) Kinin B 1 receptor antagonists inhibit diabetes-induced hyperalgesia in mice. Neuropeptides 37, 36-44.   DOI
70 Gammon, C. M., Allen, A. C. and Morell, P. (1989) Bradykinin stimulates phosphoinositide hydrolysis and mobilization of arachidonic acid in dorsal root ganglion neurons. J. Neurochem. 53, 95-101.   DOI
71 Manning, D. C., Raja, S. N., Meyer, R. A. and Campbell, J. N. (1991) Pain and hyperalgesia after intradermal injection of bradykinin in humans. Clin. Pharmacol. Ther. 50, 721-729.   DOI
72 Materazzi, S., Nassini, R., Andre, E., Campi, B., Amadesi, S., Trevisani, M., Bunnett, N. W., Patacchini, R. and Geppetti, P. (2008) Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc. Natl. Acad. Sci. U.S.A. 105, 12045-12050.   DOI
73 Mathivanan, S., Devesa, I., Changeux, J. P. and Ferrer-Montiel, A. (2016) Bradykinin induces TRPV1 exocytotic recruitment in peptidergic nociceptors. Front. Pharmacol. 7, 178.
74 Vellani, V., Zachrisson, O. and McNaughton, P. A. (2004) Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J. Physiol. 560, 391-401.   DOI
75 Dickenson, A. and Dray, A. (1991) Selective antagonism of capsaicin by capsazepine: evidence for a spinal receptor site in capsaicininduced antinociception. Br. J. Pharmacol. 104, 1045-1049.   DOI
76 Dray, A., Bettaney, J., Forster, P. and Perkins, M. (1988) Bradykinininduced stimulation of afferent fibres is mediated through protein kinase C. Neurosci. Lett. 91, 301-307.   DOI
77 Dray, A., Forbes, C. and Burgess, G. (1990) Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro. Neurosci. Lett. 110, 52-59.   DOI
78 Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V. and Nilius, B. (2004) The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels. Nature 430, 748-754.   DOI
79 Vyklicky, L., Vlachova, V., Vitaskova, Z., Dittert, I., Kabat, M. and Orkand, R. (1999) Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat. J. Physiol. 517, 181-192.   DOI
80 Walter, T., Chau, T. and Weichman, B. (1989) Effects of analgesics on bradykinin-induced writhing in mice presensitized with PGE 2. Agents Actions 27, 375-377.   DOI
81 Wang, M. M., Reynaud, D. and Pace-Asciak, C. R. (1999) In vivo stimulation of 12(S)-lipoxygenase in the rat skin by bradykinin and platelet activating factor: formation of 12(S)-HETE and hepoxilins, and actions on vascular permeability. Biochim. Biophys. Acta 1436, 354-362.   DOI
82 Gregus, A. M., Doolen, S., Dumlao, D. S., Buczynski, M. W., Takasusuki, T., Fitzsimmons, B. L., Hua, X.-Y., Taylor, B. K., Dennis, E. A. and Yaksh, T. L. (2012) Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc. Natl. Acad. Sci. U.S.A. 109, 6721-6726.   DOI
83 Gao, Y., Cao, E., Julius, D. and Cheng, Y. (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347-351.   DOI
84 Gibson, H. E., Edwards, J. G., Page, R. S., Van Hook, M. J. and Kauer, J. A. (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57, 746-759.   DOI
85 Gougat, J., Ferrari, B., Sarran, L., Planchenault, C., Poncelet, M., Maruani, J., Alonso, R., Cudennec, A., Croci, T. and Guagnini, F. (2004) SSR240612 [(2R)-2-[((3R)-3-(1, 3-benzodioxol-5-yl)-3-{[(6- methoxy-2-naphthyl) sulfonyl] amino} propanoyl) amino]-3-(4-{[2R, 6S)-2, 6-dimethylpiperidinyl] methyl} phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther. 309, 661-669.   DOI
86 Griesbacher, T., Amann, R., Sametz, W., Diethart, S. and Juan, H. (1998) The nonpeptide B2 receptor antagonist FR173657: inhibition of effects of bradykinin related to its role in nociception. Br. J. Pharmacol. 124, 1328-1334.   DOI
87 Guo, Z.-L., Fu, L.-W., Symons, J. D. and Longhurst, J. C. (1998) Signal transduction in activation of ischemically sensitive abdominal visceral afferents: role of PKC. Am. J. Physiol. 275, H1024-H1031.
88 Kim, D. and Cavanaugh, E. J. (2007) Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. J. Neurosci. 27, 6500-6509.   DOI
89 Khan, A. A., Raja, S. N., Manning, D. C., Campbell, J. N. and Meyer, R. A. (1992) The effects of bradykinin and sequence-related analogs on the response properties of cutaneous nociceptors in monkeys. Somatosens. Mot. Res. 9, 97-106.   DOI
90 Khasar, S. G., Green, P. G. and Levine, J. D. (1993) Comparison of intradermal and subcutaneous hyperalgesic effects of inflammatory mediators in the rat. Neurosci. Lett. 153, 215-218.   DOI
91 Kim, D., Cavanaugh, E. J. and Simkin, D. (2008) Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4, 5-bisphosphate. Am. J. Physiol. Cell Physiol. 295, C92-C99.   DOI
92 McGuirk, S. and Dolphin, A. (1992) G-protein mediation in nociceptive signal transduction: an investigation into the excitatory action of bradykinin in a subpopulation of cultured rat sensory neurons. Neuroscience 49, 117-128.   DOI
93 Maubach, K. A. and Grundy, D. (1999) The role of prostaglandins in the bradykinin-induced activation of serosal afferents of the rat jejunum in vitro. J. Physiol. 515, 277-285.   DOI
94 Mayer, S., Izydorczyk, I., Reeh, P. W. and Grubb, B. D. (2007) Bradykinin- induced nociceptor sensitisation to heat depends on cox-1 and cox-2 in isolated rat skin. Pain 130, 14-24.   DOI
95 Mcgehee, D. S. and Oxford, G. S. (1991) Bradykinin modulates the electrophysiology of cultured rat sensory neurons through a pertussis toxin-insensitive G protein. Mol. Cell. Neurosci. 2, 21-30.   DOI
96 McGuirk, S., Vallis, Y., Pasternak, C. and Dolphin, A. (1989) Bradykinin enhances excitability in cultured rat sensory neurones by a GTPdependent mechanisms. Neurosci. Lett. 99, 85-89.   DOI
97 Wang, S., Dai, Y., Fukuoka, T., Yamanaka, H., Kobayashi, K., Obata, K., Cui, X., Tominaga, M. and Noguchi, K. (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131, 1241-1251.   DOI
98 Babenko, V., Graven-Nielsen, T., Svensson, P., Drewes, A. M., Jensen, T. S. and Arendt-Nielsen, L. (1999) Experimental human muscle pain induced by intramuscular injections of bradykinin, serotonin, and substance P. Eur. J. Pain 3, 93-102.   DOI
99 Backonja, M., Wallace, M. S., Blonsky, E. R., Cutler, B. J., Malan, P., Rauck, R. and Tobias, J. (2008) NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study. Lancet Neurol. 7, 1106-1112.   DOI
100 Bae, S. W., Kim, H. S., Cha, Y. N., Park, Y. S., Jo, S. A. and Jo, I. (2003) Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem. Biophys. Res. Commun. 306, 981-987.   DOI
101 Wang, S., Joseph, J., Ro, J. Y. and Chung, M. K. (2015) Modality-specific mechanisms of protein kinase C-induced hypersensitivity of TRPV1: S800 is a polymodal sensitization site. Pain 156, 931-941.   DOI
102 Weinreich, D., Koschorke, G., Undem, B. and Taylor, G. (1995) Prevention of the excitatory actions of bradykinin by inhibition of PGI2 formation in nodose neurones of the guinea-pig. J. Physiol. 483, 735-746.   DOI
103 Kozaki, Y., Kambe, F., Hayashi, Y., Ohmori, S., Seo, H., Kumazawa, T. and Mizumura, K. (2007) Molecular cloning of prostaglandin EP3 receptors from canine sensory ganglia and their facilitatory action on bradykinin-induced mobilization of intracellular calcium. J. Neurochem. 100, 1636-1647.
104 Kindgen-Milles, D., Klement, W. and Arndt, J. (1994) The nociceptive systems of skin, paravascular tissue and hand veins of humans and their sensitivity to bradykinin. Neurosci. Lett. 181, 39-42.   DOI
105 Kollarik, M. and Undem, B. (2004) Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1-/-mice. J. Physiol. 555, 115-123.   DOI
106 Koltzenburg, M., Kress, M. and Reeh, P. (1992) The nociceptor sensitization by bradykinin does not depend on sympathetic neurons. Neuroscience 46, 465-473.   DOI
107 Kumazawa, T. and Mizumura, K. (1976) The polymodal C-fiber receptor in the muscle of the dog. Brain Res. 101, 589-593.   DOI
108 Patapoutian, A., Tate, S. and Woolf, C. J. (2009) Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov. 8, 55-68.   DOI
109 Oshita, K., Inoue, A., Tang, H.-B., Nakata, Y., Kawamoto, M. and Yuge, O. (2005) CB1 cannabinoid receptor stimulation modulates transient receptor potential vanilloid receptor 1 activities in calcium influx and substance P release in cultured rat dorsal root ganglion cells. J. Pharmacol. Sci. 97, 377-385.   DOI
110 Pan, H.-L. and Chen, S.-R. (2004) Sensing tissue ischemia. Circulation 110, 1826-1831.   DOI
111 Peiris, M., Hockley, J. R., Reed, D. E., Smith, E. S. J., Bulmer, D. C. and Blackshaw, L. A. (2017) Peripheral KV7 channels regulate visceral sensory function in mouse and human colon. Mol. Pain 13, 1744806917709371.
112 Perkins, M. and Kelly, D. (1993) Induction of bradykinin B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br. J. Pharmacol. 110, 1441-1444.   DOI
113 Perkins, M. N., Campbell, E. and Dray, A. (1993) Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, des-Arg 9,[Leu 8]-BK and HOE 140, in two models of persistent hyperalgesia in the rat. Pain 53, 191-197.   DOI
114 Petcu, M., Dias, J., Ongali, B., Thibault, G., Neugebauer, W. and Couture, R. (2008) Role of kinin B1 and B2 receptors in a rat model of neuropathic pain. Int. Immunopharmacol. 8, 188-196.   DOI
115 Petho, G., Derow, A. and Reeh, P. W. (2001) Bradykinin-induced nociceptor sensitization to heat is mediated by cyclooxygenase products in isolated rat skin. Eur. J. Neurosci. 14, 210-218.   DOI
116 Petho, G. and Reeh, P. W. (2012) Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol. Rev. 92, 1699-1775.   DOI
117 Bautista, D. M., Jordt, S.-E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., Yamoah, E. N., Basbaum, A. I. and Julius, D. (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269-1282.   DOI
118 Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. J. and Patapoutian, A. (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849-857.   DOI
119 Bang, S. and Hwang, S. W. (2009) Polymodal ligand sensitivity of TRPA1 and its modes of interactions. J. Gen. Physiol. 133, 257- 262.   DOI
120 Barber, L. A. and Vasko, M. R. (1996) Activation of protein kinase C augments peptide release from rat sensory neurons. J. Neurochem. 67, 72-80.
121 Beck, P. W. and Handwerker, H. O. (1974) Bradykinin and serotonin effects on various types of cutaneous nerve fibres. Pflugers Arch. 347, 209-222.   DOI
122 Rang, H. and Ritchie, J. (1988) Depolarization of nonmyelinated fibers of the rat vagus nerve produced by activation of protein kinase C. J. Neurosci. 8, 2606-2617.   DOI
123 Reeh, P. W. and Petho, G. (2000) Nociceptor excitation by thermal sensitization-a hypothesis. Prog. Brain Res. 129, 39-50.
124 Rong, W., Hillsley, K., Davis, J. B., Hicks, G., Winchester, W. J. and Grundy, D. (2004) Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J. Physiol. 560, 867-881.   DOI
125 Rueff, A. and Dray, A. (1993) Sensitization of peripheral afferent fibres in the in vitro neonatal rat spinal cord-tail by bradykinin and prostaglandins. Neuroscience 54, 527-535.   DOI
126 Furedi, R., Bolcskei, K., Szolcsanyi, J. and Petho, G. (2010) Comparison of the peripheral mediator background of heat injury-and plantar incision-induced drop of the noxious heat threshold in the rat. Life Sci. 86, 244-250.   DOI
127 Fox, A., Barnes, P., Urban, L. and Dray, A. (1993) An in vitro study of the properties of single vagal afferents innervating guinea-pig airways. J. Physiol. 469, 21-35.   DOI
128 Fox, A. J., Lalloo, U. G., Belvisi, M. G., Bernareggi, M., Chung, K. F. and Barnes, P. J. (1996) Bradykinin-evoked sensitization of airway sensory nerves: A mechanism for ACE-inhibitor cough. Nat. Med. 2, 814-817.   DOI
129 Franco-Cereceda, A. (1989) Prostaglandins and CGRP release from cardiac sensory nerves. Naunyn Schmiedebergs Arch. Pharmacol. 340, 180-184.
130 Funk, K., Woitecki, A., Franjic-Wurtz, C., Gensch, T., Mohrlen, F. and Frings, S. (2008) Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol. Pain 4, 32.
131 Schuligoi, R., Donnerer, J. and Amann, R. (1994) Bradykinin-induced sensitization of afferent neurons in the rat paw. Neuroscience 59, 211-215.   DOI
132 Rupniak, N. M., Boyce, S., Webb, J. K., Williams, A. R., Carlson, E. J., Hill, R. G., Borkowski, J. A. and Hess, J. F. (1997) Effects of the bradykinin B 1 receptor antagonist des-Arg 9 [Leu 8] bradykinin and genetic disruption of the B2 receptor on nociception in rats and mice. Pain 71, 89-97.   DOI
133 Sauer, S., Schafer, D., Kress, M. and Reeh, P. (1998) Stimulated prostaglandin E 2 release from rat skin, in vitro. Life Sci. 62, 2045-2055.   DOI
134 Sauer, S. K., Averbeck, B. and Reeh, P. W. (2000) Denervation and NKI receptor block modulate stimulated CGRP and PGE2 release from rat skin. Neuroreport 11, 283-286.   DOI
135 Shin, J., Cho, H., Hwang, S. W., Jung, J., Shin, C. Y., Lee, S.-Y., Kim, S. H., Lee, M. G., Choi, Y. H. and Kim, J. (2002) Bradykinin-12-lipoxygenase- VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. U.S.A. 99, 10150-10155.   DOI
136 Juan, H. and Lembeck, F. (1974) Action of peptides and other algesic agents on paravascular pain receptors of the isolated perfused rabbit ear. Naunyn Schmiedebergs Arch. Pharmacol. 283, 151-164.   DOI
137 Jenkins, D. W., Sellers, L. A., Feniuk, W. and Humphrey, P. P. (2003) Characterization of bradykinin-induced prostaglandin E2 release from cultured rat trigeminal ganglion neurones. Eur. J. Pharmacol. 469, 29-36.   DOI
138 Jin, X., Shah, S., Liu, Y., Zhang, H., Lees, M., Fu, Z., Lippiat, J. D., Beech, D. J., Sivaprasadarao, A. and Baldwin, S. A. (2013) Activation of the Cl- channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci. Signal. 6, ra73.   DOI
139 Juan, H. (1977) Mechanism of action of bradykinin-induced release of prostaglandin E. Naunyn Schmiedebergs Arch. Pharmacol. 300, 77-85.   DOI
140 Kajekar, R., Proud, D., Myers, A. C., Meeker, S. N. and Undem, B. J. (1999) Characterization of vagal afferent subtypes stimulated by bradykinin in guinea pig trachea. J. Pharmacol. Exp. Ther. 289, 682-687.
141 Levy, D. and Zochodne, D. W. (2000) Increased mRNA expression of the B1 and B2 bradykinin receptors and antinociceptive effects of their antagonists in an animal model of neuropathic pain. Pain 86, 265-271.   DOI
142 Kano, M., Kawakami, T., Hikawa, N., Hori, H., Takenaka, T. and Gotoh, H. (1994) Bradykinin-responsive cells of dorsal root ganglia in culture: cell size, firing, cytosolic calcium, and substance P. Cell. Mol. Neurobiol. 14, 49-57.   DOI
143 Karashima, Y., Prenen, J., Meseguer, V., Owsianik, G., Voets, T. and Nilius, B. (2008) Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Arch. 457, 77.   DOI
144 Katanosaka, K., Banik, R. K., Giron, R., Higashi, T., Tominaga, M. and Mizumura, K. (2008) Contribution of TRPV1 to the bradykininevoked nociceptive behavior and excitation of cutaneous sensory neurons. Neurosci. Res. 62, 168-175.   DOI
145 Lembeck, F., Popper, H. and Juan, H. (1976) Release of prostaglandins by bradykinin as an intrinsic mechanism of its algesic effect. Naunyn Schmiedebergs Arch. Pharmacol. 294, 69-73.   DOI
146 Leonard, P. A., Arunkumar, R. and Brennan, T. J. (2004) Bradykinin antagonists have no analgesic effect on incisional pain. Anesth. Analg. 99, 1166-1172.   DOI
147 Liang, Y. F., Haake, B. and Reeh, P. W. (2001) Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J. Physiol. 532, 229-239.   DOI
148 Luiz, A. P., Schroeder, S. D., Chichorro, J. G., Calixto, J. B., Zampronio, A. R. and Rae, G. A. (2010) Kinin B 1 and B 2 receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats. Neuropeptides 44, 87-92.   DOI
149 Liebmann, C., Graness, A., Ludwig, B., Adomeit, A., Boehmer, A., Boehmer, F.-D., Nurnberg, B. and Wetzker, R. (1996) Dual bradykinin B2 receptor signalling in A431 human epidermoid carcinoma cells: activation of protein kinase C is counteracted by a GS-mediated stimulation of the cyclic AMP pathway. Biochem. J. 313, 109-118.   DOI
150 Liu, B., Linley, J. E., Du, X., Zhang, X., Ooi, L., Zhang, H. and Gamper, N. (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca 2+-activated Cl-channels. J. Clin. Invest. 120, 1240-1252.   DOI
151 Lukacs, V., Thyagarajan, B., Varnai, P., Balla, A., Balla, T. and Rohacs, T. (2007) Dual regulation of TRPV1 by phosphoinositides. J. Neurosci. 27, 7070-7080.   DOI
152 Moriyama, T., Higashi, T., Togashi, K., Iida, T., Segi, E., Sugimoto, Y., Tominaga, T., Narumiya, S. and Tominaga, M. (2005) Sensitization of TRPV1 by EP 1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 1, 3.
153 Meotti, F. C., Figueiredo, C. P., Manjavachi, M. and Calixto, J. B. (2017) The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice. Biochem. Pharmacol. 125, 75-83.   DOI
154 Meyer, R. A., Davis, K. D., Raja, S. N. and Campbell, J. N. (1992) Sympathectomy does not abolish bradykinin-induced cutaneous hyperalgesia in man. Pain 51, 323-327.   DOI
155 Mizumura, K., Koda, H. and Kumazawa, T. (1997) Evidence that protein kinase C activation is involved in the excitatory and facilitatory effects of bradykinin on canine visceral nociceptors in vitro. Neurosci. Lett. 237, 29-32.   DOI
156 Mizumura, K., Sato, J. and Kumazawa, T. (1987) Effects of prostaglandins and other putative chemical intermediaries on the activity of canine testicular polymodal receptors studied in vitro. Pflugers Arch. 408, 565-572.   DOI
157 Mizumura, K., Sugiura, T., Katanosaka, K., Banik, R. K. and Kozaki, Y. (2009) Excitation and sensitization of nociceptors by bradykinin: what do we know? Exp. Brain Res. 196, 53-65.   DOI
158 Nakamura, A., Fujita, M. and Shiomi, H. (1996) Involvement of endogenous nitric oxide in the mechanism of bradykinin-induced peripheral hyperalgesia. Br. J. Pharmacol. 117, 407-412.   DOI
159 Numazaki, M., Tominaga, T., Toyooka, H. and Tominaga, M. (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase C${\varepsilon}$ and identification of two target serine residues. J. Biol. Chem. 277, 13375-13378.   DOI
160 Oh, E. J. and Weinreich, D. (2004) Bradykinin decreases K+ and increases Cl− conductances in vagal afferent neurones of the guinea pig. J. Physiol. 558, 513-526.   DOI
161 Petrus, M., Peier, A. M., Bandell, M., Hwang, S. W., Huynh, T., Olney, N., Jegla, T. and Patapoutian, A. (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40.
162 Akopian, A. N., Ruparel, N. B., Jeske, N. A. and Hargreaves, K. M. (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1- directed internalization. J. Physiol. 583, 175-193.   DOI
163 Allen, A. C., Gammon, C. M., Ousley, A. H., McCarthy, K. D. and Morell, P. (1992) Bradykinin stimulates arachidonic acid release through the sequential actions of an sn-1 diacylglycerol lipase and a monoacylglycerol lipase. J. Neurochem. 58, 1130-1139.   DOI
164 Bhave, G., Hu, H.-J., Glauner, K. S., Zhu, W., Wang, H., Brasier, D., Oxford, G. S. and Gereau, R. W. (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. U.S.A. 100, 12480-12485.   DOI
165 Brierley, S., Jones, R., Xu, L., Gebhart, G. and Blackshaw, L. (2005) Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol. Motil. 17, 854-862.   DOI
166 Amaya, F., Wang, H., Costigan, M., Allchorne, A. J., Hatcher, J. P., Egerton, J., Stean, T., Morisset, V., Grose, D., Gunthorpe, M. J., Chessell, I. P., Tate, S., Green, P. J. and Woolf, C. J. (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci. 26, 12852-12860.   DOI
167 Andersson, D. A., Gentry, C., Moss, S. and Bevan, S. (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci. 28, 2485-2494.   DOI
168 Armstrong, D., Jepson, J., Keele, C. and Stewart, J. (1957) Pain-producing substance in human inflammatory exudates and plasma. J. Physiol. 135, 350-370.   DOI
169 Poole, S., Lorenzetti, B., Cunha, J., Cunha, F. and Ferreira, S. (1999) Bradykinin B1 and B2 receptors, tumour necrosis factor ${\alpha}$ and inflammatory hyperalgesia. Br. J. Pharmacol. 126, 649-656.   DOI
170 Porreca, F., Vanderah, T. W., Guo, W., Barth, M., Dodey, P., Peyrou, V., Luccarini, J., Junien, J.-L. and Pruneau, D. (2006) Antinociceptive pharmacology of N-[[4-(4, 5-dihydro-1H-imidazol-2-yl) phenyl] methyl]-2-[2-[[(4-methoxy-2, 6-dimethylphenyl) sulfonyl] methylamino] ethoxy]-N-methylacetamide, fumarate (LF22-0542), a novel nonpeptidic bradykinin B1 receptor antagonist. J. Pharmacol. Exp. Ther. 318, 195-205.   DOI
171 Premkumar, L. S. and Ahern, G. P. (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985-990.   DOI
172 Prescott, E. D. and Julius, D. (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284-1288.   DOI
173 Camprubi-Robles, M., Planells-Cases, R. and Ferrer-Montiel, A. (2009) Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors. FASEB J. 23, 3722-3733.   DOI
174 Brierley, S. M., Hughes, P. A., Page, A. J., Kwan, K. Y., Martin, C. M., O'Donnell, T. A., Cooper, N. J., Harrington, A. M., Adam, B. and Liebregts, T. (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137, 2084-2095.e3.   DOI
175 Burch, R. M. and Axelrod, J. (1987) Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc. Natl. Acad. Sci. U.S.A. 84, 6374-6378.   DOI
176 Burgess, G. M., Mullaney, I., McNeill, M., Dunn, P. M. and Rang, H. P. (1989) Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J. Neurosci. 9, 3314- 3325.   DOI
177 Carr, M. J., Kollarik, M., Meeker, S. N. and Undem, B. J. (2003) A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J. Pharmacol. Exp. Ther. 304, 1275-1279.
178 Cavanaugh, D. J., Lee, H., Lo, L., Shields, S. D., Zylka, M. J., Basbaum, A. I. and Anderson, D. J. (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl. Acad. Sci. U.S.A. 106, 9075-9080.   DOI
179 Song, I., Althoff, C., Hermann, K., Scheel, A., Knetsch, T., Burmester, G. and Backhaus, M. (2008) Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI. Ann. Rheum. Dis. 68, 75-83.   DOI
180 Soukhova-O'Hare, G. K., Zhang, J. W., Gozal, D. and Yu, J. (2006) Bradykinin B 2 receptors mediate pulmonary sympathetic afferents induced reflexes in rabbits. Life Sci. 78, 1990-1997.   DOI
181 Staruschenko, A., Jeske, N. A. and Akopian, A. N. (2010) Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J. Biol. Chem. 285, 15167-15177.   DOI
182 Steranka, L. R., Manning, D. C., DeHaas, C. J., Ferkany, J. W., Borosky, S. A., Connor, J. R., Vavrek, R. J., Stewart, J. M. and Snyder, S. H. (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc. Natl. Acad. Sci. U.S.A. 85, 3245-3249.   DOI
183 Stevens, P. A., Pyne, S., Grady, M. and Pyne, N. J. (1994) Bradykinindependent activation of adenylate cyclase activity and cyclic AMP accumulation in tracheal smooth muscle occurs via protein kinase C-dependent and-independent pathways. Biochem. J. 297, 233- 239.   DOI
184 Stucky, C., Abrahams, L. and Seybold, V. (1998) Bradykinin increases the proportion of neonatal rat dorsal root ganglion neurons that respond to capsaicin and protons. Neuroscience 84, 1257-1265.   DOI
185 Sugiura, T., Tominaga, M., Katsuya, H. and Mizumura, K. (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol. 88, 544-548.   DOI
186 Sung, K.-W., Kirby, M., McDonald, M. P., Lovinger, D. M. and Delpire, E. (2000) Abnormal $GABA_A$ receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J. Neurosci. 20, 7531-7538.   DOI