DOI QR코드

DOI QR Code

Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception

  • Choi, Seung-In (Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine) ;
  • Hwang, Sun Wook (Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine)
  • Received : 2017.06.17
  • Accepted : 2017.10.24
  • Published : 2018.05.01

Abstract

Inflammation is one of the main causes of pathologic pain. Knowledge of the molecular links between inflammatory signals and pain-mediating neuronal signals is essential for understanding the mechanisms behind pain exacerbation. Some inflammatory mediators directly modulate the excitability of pain-mediating neurons by contacting the receptor molecules expressed in those neurons. For decades, many discoveries have accumulated regarding intraneuronal signals from receptor activation through electrical depolarization for bradykinin, a major inflammatory mediator that is able to both excite and sensitize pain-mediating nociceptor neurons. Here, we focus on the final effectors of depolarization, the neuronal ion channels, whose functionalities are specifically affected by bradykinin stimulation. Particular G-protein coupled signaling cascades specialized for each specific depolarizer ion channels are summarized. Some of these ion channels not only serve as downstream effectors but also play critical roles in relaying specific pain modalities such as thermal or mechanical pain. Accordingly, specific pain phenotypes altered by bradykinin stimulation are also discussed. Some members of the effector ion channels are both activated and sensitized by bradykinin-induced neuronal signaling, while others only sensitized or inhibited, which are also introduced. The present overview of the effect of bradykinin on nociceptor neuronal excitability at the molecular level may contribute to better understanding of an important aspect of inflammatory pain and help future design of further research on the components involved and pain modulating strategies.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Akopian, A. N., Ruparel, N. B., Jeske, N. A. and Hargreaves, K. M. (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1- directed internalization. J. Physiol. 583, 175-193. https://doi.org/10.1113/jphysiol.2007.133231
  2. Allen, A. C., Gammon, C. M., Ousley, A. H., McCarthy, K. D. and Morell, P. (1992) Bradykinin stimulates arachidonic acid release through the sequential actions of an sn-1 diacylglycerol lipase and a monoacylglycerol lipase. J. Neurochem. 58, 1130-1139. https://doi.org/10.1111/j.1471-4159.1992.tb09372.x
  3. Amaya, F., Wang, H., Costigan, M., Allchorne, A. J., Hatcher, J. P., Egerton, J., Stean, T., Morisset, V., Grose, D., Gunthorpe, M. J., Chessell, I. P., Tate, S., Green, P. J. and Woolf, C. J. (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci. 26, 12852-12860. https://doi.org/10.1523/JNEUROSCI.4015-06.2006
  4. Andersson, D. A., Gentry, C., Moss, S. and Bevan, S. (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci. 28, 2485-2494. https://doi.org/10.1523/JNEUROSCI.5369-07.2008
  5. Armstrong, D., Jepson, J., Keele, C. and Stewart, J. (1957) Pain-producing substance in human inflammatory exudates and plasma. J. Physiol. 135, 350-370. https://doi.org/10.1113/jphysiol.1957.sp005715
  6. Babenko, V., Graven-Nielsen, T., Svensson, P., Drewes, A. M., Jensen, T. S. and Arendt-Nielsen, L. (1999) Experimental human muscle pain induced by intramuscular injections of bradykinin, serotonin, and substance P. Eur. J. Pain 3, 93-102. https://doi.org/10.1053/eujp.1998.0103
  7. Backonja, M., Wallace, M. S., Blonsky, E. R., Cutler, B. J., Malan, P., Rauck, R. and Tobias, J. (2008) NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study. Lancet Neurol. 7, 1106-1112. https://doi.org/10.1016/S1474-4422(08)70228-X
  8. Bae, S. W., Kim, H. S., Cha, Y. N., Park, Y. S., Jo, S. A. and Jo, I. (2003) Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem. Biophys. Res. Commun. 306, 981-987. https://doi.org/10.1016/S0006-291X(03)01086-6
  9. Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. J. and Patapoutian, A. (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849-857. https://doi.org/10.1016/S0896-6273(04)00150-3
  10. Bang, S. and Hwang, S. W. (2009) Polymodal ligand sensitivity of TRPA1 and its modes of interactions. J. Gen. Physiol. 133, 257- 262. https://doi.org/10.1085/jgp.200810138
  11. Barber, L. A. and Vasko, M. R. (1996) Activation of protein kinase C augments peptide release from rat sensory neurons. J. Neurochem. 67, 72-80.
  12. Bautista, D. M., Jordt, S.-E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., Yamoah, E. N., Basbaum, A. I. and Julius, D. (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269-1282. https://doi.org/10.1016/j.cell.2006.02.023
  13. Beck, P. W. and Handwerker, H. O. (1974) Bradykinin and serotonin effects on various types of cutaneous nerve fibres. Pflugers Arch. 347, 209-222. https://doi.org/10.1007/BF00592598
  14. Bhave, G., Hu, H.-J., Glauner, K. S., Zhu, W., Wang, H., Brasier, D., Oxford, G. S. and Gereau, R. W. (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. U.S.A. 100, 12480-12485. https://doi.org/10.1073/pnas.2032100100
  15. Brierley, S., Jones, R., Xu, L., Gebhart, G. and Blackshaw, L. (2005) Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol. Motil. 17, 854-862. https://doi.org/10.1111/j.1365-2982.2005.00710.x
  16. Brierley, S. M., Hughes, P. A., Page, A. J., Kwan, K. Y., Martin, C. M., O'Donnell, T. A., Cooper, N. J., Harrington, A. M., Adam, B. and Liebregts, T. (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137, 2084-2095.e3. https://doi.org/10.1053/j.gastro.2009.07.048
  17. Burch, R. M. and Axelrod, J. (1987) Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc. Natl. Acad. Sci. U.S.A. 84, 6374-6378. https://doi.org/10.1073/pnas.84.18.6374
  18. Burgess, G. M., Mullaney, I., McNeill, M., Dunn, P. M. and Rang, H. P. (1989) Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J. Neurosci. 9, 3314- 3325. https://doi.org/10.1523/JNEUROSCI.09-09-03314.1989
  19. Camprubi-Robles, M., Planells-Cases, R. and Ferrer-Montiel, A. (2009) Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors. FASEB J. 23, 3722-3733. https://doi.org/10.1096/fj.09-134346
  20. Carr, M. J., Kollarik, M., Meeker, S. N. and Undem, B. J. (2003) A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J. Pharmacol. Exp. Ther. 304, 1275-1279.
  21. Cavanaugh, D. J., Lee, H., Lo, L., Shields, S. D., Zylka, M. J., Basbaum, A. I. and Anderson, D. J. (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl. Acad. Sci. U.S.A. 106, 9075-9080. https://doi.org/10.1073/pnas.0901507106
  22. Cesare, P., Dekker, L. V., Sardini, A., Parker, P. J. and McNaughton, P. A. (1999) Specific involvement of PKC-${\varepsilon}$ in sensitization of the neuronal response to painful heat. Neuron 23, 617-624. https://doi.org/10.1016/S0896-6273(00)80813-2
  23. Cesare, P. and McNaughton, P. (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl. Acad. Sci. U.S.A. 93, 15435-15439. https://doi.org/10.1073/pnas.93.26.15435
  24. Chahl, L. A. and Iggo, A. (1977) The effects of bradykinin and prostaglandin E1 on rat cutaneous afferent nerve activity. Br. J. Pharmacol. 59, 343-347. https://doi.org/10.1111/j.1476-5381.1977.tb07498.x
  25. Choi, S. I., Yoo, S., Lim, J. Y. and Hwang, S. W. (2014) Are sensory TRP channels biological alarms for lipid peroxidation? Int. J. Mol. Sci. 15, 16430-16457. https://doi.org/10.3390/ijms150916430
  26. Chuang, H.-h., Prescott, E. D., Kong, H., Shields, S., Jordt, S.-E., Basbaum, A. I., Chao, M. V. and Julius, D. (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns (4, 5) P2- mediated inhibition. Nature 411, 957-962. https://doi.org/10.1038/35082088
  27. Cordoba-Rodriguez, R., Moore, K. A., Kao, J. P. and Weinreich, D. (1999) Calcium regulation of a slow post-spike hyperpolarization in vagal afferent neurons. Proc. Natl. Acad. Sci. U.S.A. 96, 7650- 7657. https://doi.org/10.1073/pnas.96.14.7650
  28. Costa, R., Bicca, M. A., Manjavachi, M. N., Segat, G. C., Dias, F. C., Fernandes, E. S. and Calixto, J. B. (2018) Kinin receptors sensitize TRPV4 channel and induce mechanical hyperalgesia: relevance to paclitaxel-induced peripheral neuropathy in mice. Mol. Neurobiol. 55, 2150-2161. https://doi.org/10.1007/s12035-017-0475-9
  29. Costello, A. and Hargreaves, K. (1989) Suppression of carrageenaninduced hyperalgesia, hyperthermia and edema by a bradykinin antagonist. Eur. J. Pharmacol. 171, 259-263. https://doi.org/10.1016/0014-2999(89)90118-0
  30. Crandall, M., Kwash, J., Yu, W. and White, G. (2002) Activation of protein kinase C sensitizes human VR1 to capsaicin and to moderate decreases in pH at physiological temperatures in Xenopus oocytes. Pain 98, 109-117. https://doi.org/10.1016/S0304-3959(02)00034-9
  31. Cunha, T. M., Verri, W. A., Fukada, S. Y., Guerrero, A. T., Santodomingo- Garzon, T., Poole, S., Parada, C. A., Ferreira, S. H. and Cunha, F. Q. (2007) TNF-${\alpha}$ and IL-1${\beta}$ mediate inflammatory hypernociception in mice triggered by B 1 but not B 2 kinin receptor. Eur. J. Pharmacol. 573, 221-229. https://doi.org/10.1016/j.ejphar.2007.07.007
  32. Dai, Y., Wang, S., Tominaga, M., Yamamoto, S., Fukuoka, T., Higashi, T., Kobayashi, K., Obata, K., Yamanaka, H. and Noguchi, K. (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Invest. 117, 1979-1987. https://doi.org/10.1172/JCI30951
  33. De Campos, R., Henriques, M. and Calixto, J. (1998) Systemic treatment with Mycobacterium bovis bacillus calmette-guerin (BCG) potentiates kinin B 1 receptor agonist-induced nociception and oedema formation in the formalin test in mice. Neuropeptides 32, 393-403. https://doi.org/10.1016/S0143-4179(98)90062-2
  34. de Oliveira Fusaro, M. C. G., Pelegrini-da-Silva, A., Araldi, D., Parada, C. A. and Tambeli, C. H. (2010) P2X3 and P2X2/3 receptors mediate mechanical hyperalgesia induced by bradykinin, but not by proinflammatory cytokines, PGE 2 or dopamine. Eur. J. Pharmacol. 649, 177-182. https://doi.org/10.1016/j.ejphar.2010.09.037
  35. Delmas, P. and Brown, D. A. (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6, 850- 862. https://doi.org/10.1038/nrn1785
  36. Dickenson, A. and Dray, A. (1991) Selective antagonism of capsaicin by capsazepine: evidence for a spinal receptor site in capsaicininduced antinociception. Br. J. Pharmacol. 104, 1045-1049. https://doi.org/10.1111/j.1476-5381.1991.tb12547.x
  37. Dray, A., Bettaney, J., Forster, P. and Perkins, M. (1988) Bradykinininduced stimulation of afferent fibres is mediated through protein kinase C. Neurosci. Lett. 91, 301-307. https://doi.org/10.1016/0304-3940(88)90697-0
  38. Dray, A., Forbes, C. and Burgess, G. (1990) Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro. Neurosci. Lett. 110, 52-59. https://doi.org/10.1016/0304-3940(90)90786-9
  39. Dray, A., Patel, I., Perkins, M. and Rueff, A. (1992) Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br. J. Pharmacol. 107, 1129-1134. https://doi.org/10.1111/j.1476-5381.1992.tb13418.x
  40. Dubin, A. E., Schmidt, M., Mathur, J., Petrus, M. J., Xiao, B., Coste, B. and Patapoutian, A. (2012) Inflammatory signals enhance piezo2- mediated mechanosensitive currents. Cell Rep. 2, 511-517. https://doi.org/10.1016/j.celrep.2012.07.014
  41. Ferreira, J., Beirith, A., Mori, M. A., Araujo, R. C., Bader, M., Pesquero, J. B. and Calixto, J. B. (2005) Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice. J. Neurosci. 25, 2405-2412. https://doi.org/10.1523/JNEUROSCI.2466-04.2005
  42. Ferreira, J., Campos, M. M., Pesquero, J. B., Araujo, R. C., Bader, M. and Calixto, J. B. (2001) Evidence for the participation of kinins in Freund's adjuvant-induced inflammatory and nociceptive responses in kinin B 1 and B 2 receptor knockout mice. Neuropharmacology 41, 1006-1012. https://doi.org/10.1016/S0028-3908(01)00142-3
  43. Ferreira, J., Da Silva, G. L. and Calixto, J. B. (2004) Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br. J. Pharmacol. 141, 787-794. https://doi.org/10.1038/sj.bjp.0705546
  44. Ferreira, S., Lorenzetti, B., Cunha, F. and Poole, S. (1993a) Bradykinin release of TNF-${\alpha}$ plays a key role in the development of inflammatory hyperalgesia. Agents Actions 38, C7-C9. https://doi.org/10.1007/BF01991120
  45. Ferreira, S., Lorenzetti, B. and Poole, S. (1993b) Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br. J. Pharmacol. 110, 1227-1231. https://doi.org/10.1111/j.1476-5381.1993.tb13946.x
  46. Fischer, M. J., Balasuriya, D., Jeggle, P., Goetze, T. A., McNaughton, P. A., Reeh, P. W. and Edwardson, J. M. (2014) Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Arch. 466, 2229- 2241. https://doi.org/10.1007/s00424-014-1497-z
  47. Fischer, M. J. and McNaughton, P. A. (2014) How anchoring proteins shape pain. Pharmacol. Ther. 143, 316-322. https://doi.org/10.1016/j.pharmthera.2014.04.001
  48. Fox, A., Barnes, P., Urban, L. and Dray, A. (1993) An in vitro study of the properties of single vagal afferents innervating guinea-pig airways. J. Physiol. 469, 21-35. https://doi.org/10.1113/jphysiol.1993.sp019802
  49. Fox, A. J., Lalloo, U. G., Belvisi, M. G., Bernareggi, M., Chung, K. F. and Barnes, P. J. (1996) Bradykinin-evoked sensitization of airway sensory nerves: A mechanism for ACE-inhibitor cough. Nat. Med. 2, 814-817. https://doi.org/10.1038/nm0796-814
  50. Franco-Cereceda, A. (1989) Prostaglandins and CGRP release from cardiac sensory nerves. Naunyn Schmiedebergs Arch. Pharmacol. 340, 180-184.
  51. Furedi, R., Bolcskei, K., Szolcsanyi, J. and Petho, G. (2010) Comparison of the peripheral mediator background of heat injury-and plantar incision-induced drop of the noxious heat threshold in the rat. Life Sci. 86, 244-250. https://doi.org/10.1016/j.lfs.2009.12.010
  52. Funk, K., Woitecki, A., Franjic-Wurtz, C., Gensch, T., Mohrlen, F. and Frings, S. (2008) Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol. Pain 4, 32.
  53. Gabra, B. H., Benrezzak, O., Pheng, L.-H., Duta, D., Daull, P., Sirois, P., Nantel, F. and Battistini, B. (2005a) Inhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worchester rats: efficacy of a selective bradykinin B1 receptor antagonist. J. Neuropathol. Exp. Neurol. 64, 782-789. https://doi.org/10.1097/01.jnen.0000178448.79713.5f
  54. Gabra, B. H., Merino, V. F., Bader, M., Pesquero, J. B. and Sirois, P. (2005b) Absence of diabetic hyperalgesia in bradykinin B1 receptor- knockout mice. Regul. Pept. 127, 245-248. https://doi.org/10.1016/j.regpep.2004.12.003
  55. Gabra, B. H. and Sirois, P. (2002) Role of bradykinin B 1 receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice. Eur. J. Pharmacol. 457, 115-124. https://doi.org/10.1016/S0014-2999(02)02658-4
  56. Gabra, B. H. and Sirois, P. (2003a) Beneficial effect of chronic treatment with the selective bradykinin B 1 receptor antagonists, R-715 and R-954, in attenuating streptozotocin-diabetic thermal hyperalgesia in mice. Peptides 24, 1131-1139. https://doi.org/10.1016/j.peptides.2003.06.003
  57. Gabra, B. H. and Sirois, P. (2003b) Kinin B 1 receptor antagonists inhibit diabetes-induced hyperalgesia in mice. Neuropeptides 37, 36-44. https://doi.org/10.1016/S0143-4179(02)00148-8
  58. Gammon, C. M., Allen, A. C. and Morell, P. (1989) Bradykinin stimulates phosphoinositide hydrolysis and mobilization of arachidonic acid in dorsal root ganglion neurons. J. Neurochem. 53, 95-101. https://doi.org/10.1111/j.1471-4159.1989.tb07299.x
  59. Gao, Y., Cao, E., Julius, D. and Cheng, Y. (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347-351. https://doi.org/10.1038/nature17964
  60. Gibson, H. E., Edwards, J. G., Page, R. S., Van Hook, M. J. and Kauer, J. A. (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57, 746-759. https://doi.org/10.1016/j.neuron.2007.12.027
  61. Gougat, J., Ferrari, B., Sarran, L., Planchenault, C., Poncelet, M., Maruani, J., Alonso, R., Cudennec, A., Croci, T. and Guagnini, F. (2004) SSR240612 [(2R)-2-[((3R)-3-(1, 3-benzodioxol-5-yl)-3-{[(6- methoxy-2-naphthyl) sulfonyl] amino} propanoyl) amino]-3-(4-{[2R, 6S)-2, 6-dimethylpiperidinyl] methyl} phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther. 309, 661-669. https://doi.org/10.1124/jpet.103.059527
  62. Gregus, A. M., Doolen, S., Dumlao, D. S., Buczynski, M. W., Takasusuki, T., Fitzsimmons, B. L., Hua, X.-Y., Taylor, B. K., Dennis, E. A. and Yaksh, T. L. (2012) Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc. Natl. Acad. Sci. U.S.A. 109, 6721-6726. https://doi.org/10.1073/pnas.1110460109
  63. Griesbacher, T., Amann, R., Sametz, W., Diethart, S. and Juan, H. (1998) The nonpeptide B2 receptor antagonist FR173657: inhibition of effects of bradykinin related to its role in nociception. Br. J. Pharmacol. 124, 1328-1334. https://doi.org/10.1038/sj.bjp.0701938
  64. Guo, Z.-L., Fu, L.-W., Symons, J. D. and Longhurst, J. C. (1998) Signal transduction in activation of ischemically sensitive abdominal visceral afferents: role of PKC. Am. J. Physiol. 275, H1024-H1031.
  65. Guo, Z.-L., Symons, J. D. and Longhurst, J. C. (1999) Activation of visceral afferents by bradykinin and ischemia: independent roles of PKC and prostaglandins. Am. J. Physiol. 276, H1884-H1891.
  66. Haake, B., Liang, Y. and Reeh, P. (1996) Bradykinin effects and receptor subtypes in rat cutaneous nociceptors, in vitro. Pflugers Arch. 431, R15.
  67. Hinman, A., Chuang, H.-h., Bautista, D. M. and Julius, D. (2006) TRP channel activation by reversible covalent modification. Proc. Natl. Acad. Sci. U.S.A. 103, 19564-19568. https://doi.org/10.1073/pnas.0609598103
  68. Hong, Y. and Abbott, F. (1994) Behavioural effects of intraplantar injection of inflammatory mediators in the rat. Neuroscience 63, 827- 836. https://doi.org/10.1016/0306-4522(94)90527-4
  69. Hwang, S. W., Cho, H., Kwak, J., Lee, S.-Y., Kang, C.-J., Jung, J., Cho, S., Min, K. H., Suh, Y.-G. and Kim, D. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. U.S.A. 97, 6155- 6160. https://doi.org/10.1073/pnas.97.11.6155
  70. Ikeda, Y., Ueno, A., Naraba, H. and Oh-ishi, S. (2001a) Evidence for bradykinin mediation of carrageenin-induced inflammatory pain: a study using kininogen-deficient Brown Norway Katholiek rats. Biochem. Pharmacol. 61, 911-914. https://doi.org/10.1016/S0006-2952(01)00536-6
  71. Ikeda, Y., Ueno, A., Naraba, H. and Oh-ishi, S. (2001b) Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. Life Sci. 69, 2911-2919. https://doi.org/10.1016/S0024-3205(01)01374-1
  72. Inoue, A., Iwasa, M., Nishikura, Y., Ogawa, S., Nakasuka, A. and Nakata, Y. (2006) The long-term exposure of rat cultured dorsal root ganglion cells to bradykinin induced the release of prostaglandin E2 by the activation of cyclooxygenase-2. Neurosci. Lett. 401, 242- 247. https://doi.org/10.1016/j.neulet.2006.03.026
  73. Jackson, J. G., Usachev, Y. M. and Thayer, S. A. (2007) Bradykinininduced nuclear factor of activated T-cells-dependent transcription in rat dorsal root ganglion neurons. Mol. Pharmacol. 72, 303-310. https://doi.org/10.1124/mol.107.035048
  74. Jenkins, D. W., Sellers, L. A., Feniuk, W. and Humphrey, P. P. (2003) Characterization of bradykinin-induced prostaglandin E2 release from cultured rat trigeminal ganglion neurones. Eur. J. Pharmacol. 469, 29-36. https://doi.org/10.1016/S0014-2999(03)01732-1
  75. Jin, X., Shah, S., Liu, Y., Zhang, H., Lees, M., Fu, Z., Lippiat, J. D., Beech, D. J., Sivaprasadarao, A. and Baldwin, S. A. (2013) Activation of the Cl- channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci. Signal. 6, ra73. https://doi.org/10.1126/scisignal.2004184
  76. Juan, H. (1977) Mechanism of action of bradykinin-induced release of prostaglandin E. Naunyn Schmiedebergs Arch. Pharmacol. 300, 77-85. https://doi.org/10.1007/BF00505082
  77. Juan, H. and Lembeck, F. (1974) Action of peptides and other algesic agents on paravascular pain receptors of the isolated perfused rabbit ear. Naunyn Schmiedebergs Arch. Pharmacol. 283, 151-164. https://doi.org/10.1007/BF00501142
  78. Kajekar, R., Proud, D., Myers, A. C., Meeker, S. N. and Undem, B. J. (1999) Characterization of vagal afferent subtypes stimulated by bradykinin in guinea pig trachea. J. Pharmacol. Exp. Ther. 289, 682-687.
  79. Kano, M., Kawakami, T., Hikawa, N., Hori, H., Takenaka, T. and Gotoh, H. (1994) Bradykinin-responsive cells of dorsal root ganglia in culture: cell size, firing, cytosolic calcium, and substance P. Cell. Mol. Neurobiol. 14, 49-57. https://doi.org/10.1007/BF02088588
  80. Karashima, Y., Prenen, J., Meseguer, V., Owsianik, G., Voets, T. and Nilius, B. (2008) Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Arch. 457, 77. https://doi.org/10.1007/s00424-008-0493-6
  81. Katanosaka, K., Banik, R. K., Giron, R., Higashi, T., Tominaga, M. and Mizumura, K. (2008) Contribution of TRPV1 to the bradykininevoked nociceptive behavior and excitation of cutaneous sensory neurons. Neurosci. Res. 62, 168-175. https://doi.org/10.1016/j.neures.2008.08.004
  82. Khan, A. A., Raja, S. N., Manning, D. C., Campbell, J. N. and Meyer, R. A. (1992) The effects of bradykinin and sequence-related analogs on the response properties of cutaneous nociceptors in monkeys. Somatosens. Mot. Res. 9, 97-106. https://doi.org/10.3109/08990229209144765
  83. Khasar, S. G., Green, P. G. and Levine, J. D. (1993) Comparison of intradermal and subcutaneous hyperalgesic effects of inflammatory mediators in the rat. Neurosci. Lett. 153, 215-218. https://doi.org/10.1016/0304-3940(93)90325-F
  84. Kim, D. and Cavanaugh, E. J. (2007) Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. J. Neurosci. 27, 6500-6509. https://doi.org/10.1523/JNEUROSCI.0623-07.2007
  85. Kim, D., Cavanaugh, E. J. and Simkin, D. (2008) Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4, 5-bisphosphate. Am. J. Physiol. Cell Physiol. 295, C92-C99. https://doi.org/10.1152/ajpcell.00023.2008
  86. Kindgen-Milles, D., Klement, W. and Arndt, J. (1994) The nociceptive systems of skin, paravascular tissue and hand veins of humans and their sensitivity to bradykinin. Neurosci. Lett. 181, 39-42. https://doi.org/10.1016/0304-3940(94)90555-X
  87. Kollarik, M. and Undem, B. (2004) Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1-/-mice. J. Physiol. 555, 115-123. https://doi.org/10.1113/jphysiol.2003.054890
  88. Koltzenburg, M., Kress, M. and Reeh, P. (1992) The nociceptor sensitization by bradykinin does not depend on sympathetic neurons. Neuroscience 46, 465-473. https://doi.org/10.1016/0306-4522(92)90066-B
  89. Kozaki, Y., Kambe, F., Hayashi, Y., Ohmori, S., Seo, H., Kumazawa, T. and Mizumura, K. (2007) Molecular cloning of prostaglandin EP3 receptors from canine sensory ganglia and their facilitatory action on bradykinin-induced mobilization of intracellular calcium. J. Neurochem. 100, 1636-1647.
  90. Kumazawa, T. and Mizumura, K. (1976) The polymodal C-fiber receptor in the muscle of the dog. Brain Res. 101, 589-593. https://doi.org/10.1016/0006-8993(76)90483-2
  91. Kumazawa, T., Mizumura, K., Minagawa, M. and Tsujii, Y. (1991) Sensitizing effects of bradykinin on the heat responses of the visceral nociceptor. J. Neurophysiol. 66, 1819-1824. https://doi.org/10.1152/jn.1991.66.6.1819
  92. Kwan, K. Y., Allchorne, A. J., Vollrath, M. A., Christensen, A. P., Zhang, D.-S., Woolf, C. J. and Corey, D. P. (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277-289. https://doi.org/10.1016/j.neuron.2006.03.042
  93. Kwan, K. Y., Glazer, J. M., Corey, D. P., Rice, F. L. and Stucky, C. L. (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J. Neurosci. 29, 4808-4819. https://doi.org/10.1523/JNEUROSCI.5380-08.2009
  94. Labrakakis, C., Tong, C. K., Weissman, T., Torsney, C. and MacDermott, A. B. (2003) Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat. J. Physiol. 549, 131-142. https://doi.org/10.1113/jphysiol.2002.031963
  95. Lang, E., Novak, A., Reeh, P. and Handwerker, H. (1990) Chemosensitivity of fine afferents from rat skin in vitro. J. Neurophysiol. 63, 887-901. https://doi.org/10.1152/jn.1990.63.4.887
  96. Lee, M. G., MacGlashan, D. W. and Undem, B. J. (2005a) Role of chloride channels in bradykinin-induced guinea pig airway vagal C-+fibre activation. J. Physiol. 566, 205-212. https://doi.org/10.1113/jphysiol.2005.087577
  97. Lee, S.-Y., Lee, J.-H., Kang, K. K., Hwang, S.-Y., Choi, K. D. and Oh, U. (2005b) Sensitization of vanilloid receptor involves an increase in the phosphorylated form of the channel. Arch. Pharm. Res. 28, 405-412. https://doi.org/10.1007/BF02977669
  98. Lee, B., Cho, H., Jung, J., Yang, Y. D., Yang, D. J. and Oh, U. (2014). Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol. Pain 10, 5.
  99. Lembeck, F. and Juan, H. (1974) Interaction of prostaglandins and indomethacin with algesic substances. Naunyn Schmiedebergs Arch. Pharmacol. 285, 301-313. https://doi.org/10.1007/BF00501460
  100. Lembeck, F., Popper, H. and Juan, H. (1976) Release of prostaglandins by bradykinin as an intrinsic mechanism of its algesic effect. Naunyn Schmiedebergs Arch. Pharmacol. 294, 69-73. https://doi.org/10.1007/BF00692786
  101. Leonard, P. A., Arunkumar, R. and Brennan, T. J. (2004) Bradykinin antagonists have no analgesic effect on incisional pain. Anesth. Analg. 99, 1166-1172. https://doi.org/10.1213/01.ANE.0000130348.85587.BE
  102. Levy, D. and Zochodne, D. W. (2000) Increased mRNA expression of the B1 and B2 bradykinin receptors and antinociceptive effects of their antagonists in an animal model of neuropathic pain. Pain 86, 265-271. https://doi.org/10.1016/S0304-3959(00)00256-6
  103. Liang, Y. F., Haake, B. and Reeh, P. W. (2001) Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J. Physiol. 532, 229-239. https://doi.org/10.1111/j.1469-7793.2001.0229g.x
  104. Liebmann, C., Graness, A., Ludwig, B., Adomeit, A., Boehmer, A., Boehmer, F.-D., Nurnberg, B. and Wetzker, R. (1996) Dual bradykinin B2 receptor signalling in A431 human epidermoid carcinoma cells: activation of protein kinase C is counteracted by a GS-mediated stimulation of the cyclic AMP pathway. Biochem. J. 313, 109-118. https://doi.org/10.1042/bj3130109
  105. Liu, B., Linley, J. E., Du, X., Zhang, X., Ooi, L., Zhang, H. and Gamper, N. (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca 2+-activated Cl-channels. J. Clin. Invest. 120, 1240-1252. https://doi.org/10.1172/JCI41084
  106. Luiz, A. P., Schroeder, S. D., Chichorro, J. G., Calixto, J. B., Zampronio, A. R. and Rae, G. A. (2010) Kinin B 1 and B 2 receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats. Neuropeptides 44, 87-92. https://doi.org/10.1016/j.npep.2009.10.005
  107. Lukacs, V., Thyagarajan, B., Varnai, P., Balla, A., Balla, T. and Rohacs, T. (2007) Dual regulation of TRPV1 by phosphoinositides. J. Neurosci. 27, 7070-7080. https://doi.org/10.1523/JNEUROSCI.1866-07.2007
  108. Macpherson, L. J., Dubin, A. E., Evans, M. J., Marr, F., Schultz, P. G., Cravatt, B. F. and Patapoutian, A. (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541-545. https://doi.org/10.1038/nature05544
  109. Manning, D. C., Raja, S. N., Meyer, R. A. and Campbell, J. N. (1991) Pain and hyperalgesia after intradermal injection of bradykinin in humans. Clin. Pharmacol. Ther. 50, 721-729. https://doi.org/10.1038/clpt.1991.212
  110. Materazzi, S., Nassini, R., Andre, E., Campi, B., Amadesi, S., Trevisani, M., Bunnett, N. W., Patacchini, R. and Geppetti, P. (2008) Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc. Natl. Acad. Sci. U.S.A. 105, 12045-12050. https://doi.org/10.1073/pnas.0802354105
  111. Mathivanan, S., Devesa, I., Changeux, J. P. and Ferrer-Montiel, A. (2016) Bradykinin induces TRPV1 exocytotic recruitment in peptidergic nociceptors. Front. Pharmacol. 7, 178.
  112. Maubach, K. A. and Grundy, D. (1999) The role of prostaglandins in the bradykinin-induced activation of serosal afferents of the rat jejunum in vitro. J. Physiol. 515, 277-285. https://doi.org/10.1111/j.1469-7793.1999.277ad.x
  113. Mayer, S., Izydorczyk, I., Reeh, P. W. and Grubb, B. D. (2007) Bradykinin- induced nociceptor sensitisation to heat depends on cox-1 and cox-2 in isolated rat skin. Pain 130, 14-24. https://doi.org/10.1016/j.pain.2006.10.027
  114. Mcgehee, D. S. and Oxford, G. S. (1991) Bradykinin modulates the electrophysiology of cultured rat sensory neurons through a pertussis toxin-insensitive G protein. Mol. Cell. Neurosci. 2, 21-30. https://doi.org/10.1016/1044-7431(91)90036-N
  115. McGuirk, S. and Dolphin, A. (1992) G-protein mediation in nociceptive signal transduction: an investigation into the excitatory action of bradykinin in a subpopulation of cultured rat sensory neurons. Neuroscience 49, 117-128. https://doi.org/10.1016/0306-4522(92)90079-H
  116. McGuirk, S., Vallis, Y., Pasternak, C. and Dolphin, A. (1989) Bradykinin enhances excitability in cultured rat sensory neurones by a GTPdependent mechanisms. Neurosci. Lett. 99, 85-89. https://doi.org/10.1016/0304-3940(89)90269-3
  117. Meotti, F. C., Figueiredo, C. P., Manjavachi, M. and Calixto, J. B. (2017) The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice. Biochem. Pharmacol. 125, 75-83. https://doi.org/10.1016/j.bcp.2016.11.003
  118. Meyer, R. A., Davis, K. D., Raja, S. N. and Campbell, J. N. (1992) Sympathectomy does not abolish bradykinin-induced cutaneous hyperalgesia in man. Pain 51, 323-327. https://doi.org/10.1016/0304-3959(92)90217-Y
  119. Mizumura, K., Koda, H. and Kumazawa, T. (1997) Evidence that protein kinase C activation is involved in the excitatory and facilitatory effects of bradykinin on canine visceral nociceptors in vitro. Neurosci. Lett. 237, 29-32. https://doi.org/10.1016/S0304-3940(97)00793-3
  120. Mizumura, K., Sato, J. and Kumazawa, T. (1987) Effects of prostaglandins and other putative chemical intermediaries on the activity of canine testicular polymodal receptors studied in vitro. Pflugers Arch. 408, 565-572. https://doi.org/10.1007/BF00581157
  121. Mizumura, K., Sugiura, T., Katanosaka, K., Banik, R. K. and Kozaki, Y. (2009) Excitation and sensitization of nociceptors by bradykinin: what do we know? Exp. Brain Res. 196, 53-65. https://doi.org/10.1007/s00221-009-1814-5
  122. Moriyama, T., Higashi, T., Togashi, K., Iida, T., Segi, E., Sugimoto, Y., Tominaga, T., Narumiya, S. and Tominaga, M. (2005) Sensitization of TRPV1 by EP 1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 1, 3.
  123. Nakamura, A., Fujita, M. and Shiomi, H. (1996) Involvement of endogenous nitric oxide in the mechanism of bradykinin-induced peripheral hyperalgesia. Br. J. Pharmacol. 117, 407-412. https://doi.org/10.1111/j.1476-5381.1996.tb15205.x
  124. Numazaki, M., Tominaga, T., Toyooka, H. and Tominaga, M. (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase C${\varepsilon}$ and identification of two target serine residues. J. Biol. Chem. 277, 13375-13378. https://doi.org/10.1074/jbc.C200104200
  125. Oh, E. J. and Weinreich, D. (2004) Bradykinin decreases K+ and increases Cl− conductances in vagal afferent neurones of the guinea pig. J. Physiol. 558, 513-526. https://doi.org/10.1113/jphysiol.2004.066381
  126. Oshita, K., Inoue, A., Tang, H.-B., Nakata, Y., Kawamoto, M. and Yuge, O. (2005) CB1 cannabinoid receptor stimulation modulates transient receptor potential vanilloid receptor 1 activities in calcium influx and substance P release in cultured rat dorsal root ganglion cells. J. Pharmacol. Sci. 97, 377-385. https://doi.org/10.1254/jphs.FP0040872
  127. Pan, H.-L. and Chen, S.-R. (2004) Sensing tissue ischemia. Circulation 110, 1826-1831. https://doi.org/10.1161/01.CIR.0000142618.20278.7A
  128. Patapoutian, A., Tate, S. and Woolf, C. J. (2009) Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov. 8, 55-68. https://doi.org/10.1038/nrd2757
  129. Peiris, M., Hockley, J. R., Reed, D. E., Smith, E. S. J., Bulmer, D. C. and Blackshaw, L. A. (2017) Peripheral KV7 channels regulate visceral sensory function in mouse and human colon. Mol. Pain 13, 1744806917709371.
  130. Perkins, M. and Kelly, D. (1993) Induction of bradykinin B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br. J. Pharmacol. 110, 1441-1444. https://doi.org/10.1111/j.1476-5381.1993.tb13982.x
  131. Perkins, M. N., Campbell, E. and Dray, A. (1993) Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, des-Arg 9,[Leu 8]-BK and HOE 140, in two models of persistent hyperalgesia in the rat. Pain 53, 191-197. https://doi.org/10.1016/0304-3959(93)90080-9
  132. Petcu, M., Dias, J., Ongali, B., Thibault, G., Neugebauer, W. and Couture, R. (2008) Role of kinin B1 and B2 receptors in a rat model of neuropathic pain. Int. Immunopharmacol. 8, 188-196. https://doi.org/10.1016/j.intimp.2007.09.009
  133. Petho, G., Derow, A. and Reeh, P. W. (2001) Bradykinin-induced nociceptor sensitization to heat is mediated by cyclooxygenase products in isolated rat skin. Eur. J. Neurosci. 14, 210-218. https://doi.org/10.1046/j.0953-816x.2001.01651.x
  134. Petho, G. and Reeh, P. W. (2012) Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol. Rev. 92, 1699-1775. https://doi.org/10.1152/physrev.00048.2010
  135. Petrus, M., Peier, A. M., Bandell, M., Hwang, S. W., Huynh, T., Olney, N., Jegla, T. and Patapoutian, A. (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40.
  136. Poole, S., Lorenzetti, B., Cunha, J., Cunha, F. and Ferreira, S. (1999) Bradykinin B1 and B2 receptors, tumour necrosis factor ${\alpha}$ and inflammatory hyperalgesia. Br. J. Pharmacol. 126, 649-656. https://doi.org/10.1038/sj.bjp.0702347
  137. Porreca, F., Vanderah, T. W., Guo, W., Barth, M., Dodey, P., Peyrou, V., Luccarini, J., Junien, J.-L. and Pruneau, D. (2006) Antinociceptive pharmacology of N-[[4-(4, 5-dihydro-1H-imidazol-2-yl) phenyl] methyl]-2-[2-[[(4-methoxy-2, 6-dimethylphenyl) sulfonyl] methylamino] ethoxy]-N-methylacetamide, fumarate (LF22-0542), a novel nonpeptidic bradykinin B1 receptor antagonist. J. Pharmacol. Exp. Ther. 318, 195-205. https://doi.org/10.1124/jpet.105.098368
  138. Premkumar, L. S. and Ahern, G. P. (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985-990. https://doi.org/10.1038/35050121
  139. Prescott, E. D. and Julius, D. (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284-1288. https://doi.org/10.1126/science.1083646
  140. Price, T. J., Cervero, F., Gold, M. S., Hammond, D. L. and Prescott, S. A. (2009) Chloride regulation in the pain pathway. Brain Res. Rev. 60, 149-170. https://doi.org/10.1016/j.brainresrev.2008.12.015
  141. Qin, C., Farber, J. P., Miller, K. E. and Foreman, R. D. (2006) Responses of thoracic spinal neurons to activation and desensitization of cardiac TRPV1-containing afferents in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1700-R1707. https://doi.org/10.1152/ajpregu.00231.2006
  142. Quintao, N. L., Passos, G. F., Medeiros, R., Paszcuk, A. F., Motta, F. L., Pesquero, J. B., Campos, M. M. and Calixto, J. B. (2008) Neuropathic pain-like behavior after brachial plexus avulsion in mice: the relevance of kinin B1 and B2 receptors. J. Neurosci. 28, 2856- 2863. https://doi.org/10.1523/JNEUROSCI.4389-07.2008
  143. Rang, H. and Ritchie, J. (1988) Depolarization of nonmyelinated fibers of the rat vagus nerve produced by activation of protein kinase C. J. Neurosci. 8, 2606-2617. https://doi.org/10.1523/JNEUROSCI.08-07-02606.1988
  144. Reeh, P. W. and Petho, G. (2000) Nociceptor excitation by thermal sensitization-a hypothesis. Prog. Brain Res. 129, 39-50.
  145. Rong, W., Hillsley, K., Davis, J. B., Hicks, G., Winchester, W. J. and Grundy, D. (2004) Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J. Physiol. 560, 867-881. https://doi.org/10.1113/jphysiol.2004.071746
  146. Rueff, A. and Dray, A. (1993) Sensitization of peripheral afferent fibres in the in vitro neonatal rat spinal cord-tail by bradykinin and prostaglandins. Neuroscience 54, 527-535. https://doi.org/10.1016/0306-4522(93)90272-H
  147. Rupniak, N. M., Boyce, S., Webb, J. K., Williams, A. R., Carlson, E. J., Hill, R. G., Borkowski, J. A. and Hess, J. F. (1997) Effects of the bradykinin B 1 receptor antagonist des-Arg 9 [Leu 8] bradykinin and genetic disruption of the B2 receptor on nociception in rats and mice. Pain 71, 89-97. https://doi.org/10.1016/S0304-3959(97)03343-5
  148. Sauer, S., Schafer, D., Kress, M. and Reeh, P. (1998) Stimulated prostaglandin E 2 release from rat skin, in vitro. Life Sci. 62, 2045-2055. https://doi.org/10.1016/S0024-3205(98)00176-3
  149. Sauer, S. K., Averbeck, B. and Reeh, P. W. (2000) Denervation and NKI receptor block modulate stimulated CGRP and PGE2 release from rat skin. Neuroreport 11, 283-286. https://doi.org/10.1097/00001756-200002070-00012
  150. Schuligoi, R., Donnerer, J. and Amann, R. (1994) Bradykinin-induced sensitization of afferent neurons in the rat paw. Neuroscience 59, 211-215. https://doi.org/10.1016/0306-4522(94)90111-2
  151. Shin, J., Cho, H., Hwang, S. W., Jung, J., Shin, C. Y., Lee, S.-Y., Kim, S. H., Lee, M. G., Choi, Y. H. and Kim, J. (2002) Bradykinin-12-lipoxygenase- VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. U.S.A. 99, 10150-10155. https://doi.org/10.1073/pnas.152002699
  152. Song, I., Althoff, C., Hermann, K., Scheel, A., Knetsch, T., Burmester, G. and Backhaus, M. (2008) Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI. Ann. Rheum. Dis. 68, 75-83. https://doi.org/10.1136/ard.2007.080382
  153. Soukhova-O'Hare, G. K., Zhang, J. W., Gozal, D. and Yu, J. (2006) Bradykinin B 2 receptors mediate pulmonary sympathetic afferents induced reflexes in rabbits. Life Sci. 78, 1990-1997. https://doi.org/10.1016/j.lfs.2005.08.035
  154. Staruschenko, A., Jeske, N. A. and Akopian, A. N. (2010) Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J. Biol. Chem. 285, 15167-15177. https://doi.org/10.1074/jbc.M110.106153
  155. Steranka, L. R., Manning, D. C., DeHaas, C. J., Ferkany, J. W., Borosky, S. A., Connor, J. R., Vavrek, R. J., Stewart, J. M. and Snyder, S. H. (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc. Natl. Acad. Sci. U.S.A. 85, 3245-3249. https://doi.org/10.1073/pnas.85.9.3245
  156. Stevens, P. A., Pyne, S., Grady, M. and Pyne, N. J. (1994) Bradykinindependent activation of adenylate cyclase activity and cyclic AMP accumulation in tracheal smooth muscle occurs via protein kinase C-dependent and-independent pathways. Biochem. J. 297, 233- 239. https://doi.org/10.1042/bj2970233
  157. Stucky, C., Abrahams, L. and Seybold, V. (1998) Bradykinin increases the proportion of neonatal rat dorsal root ganglion neurons that respond to capsaicin and protons. Neuroscience 84, 1257-1265. https://doi.org/10.1016/S0306-4522(97)00572-1
  158. Sugiura, T., Tominaga, M., Katsuya, H. and Mizumura, K. (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol. 88, 544-548. https://doi.org/10.1152/jn.2002.88.1.544
  159. Sung, K.-W., Kirby, M., McDonald, M. P., Lovinger, D. M. and Delpire, E. (2000) Abnormal $GABA_A$ receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J. Neurosci. 20, 7531-7538. https://doi.org/10.1523/JNEUROSCI.20-20-07531.2000
  160. Taiwo, Y., Heller, P. and Levine, J. (1990) Characterization of distinct phospholipases mediating bradykinin and noradrenaline hyperalgesia. Neuroscience 39, 523-531. https://doi.org/10.1016/0306-4522(90)90288-F
  161. Taiwo, Y. O. and Levine, J. D. (1988) Characterization of the arachidonic acid metabolites mediating bradykinin and noradrenaline hyperalgesia. Brain Res. 458, 402-406. https://doi.org/10.1016/0006-8993(88)90487-8
  162. Tang, H.-B., Inoue, A., Oshita, K., Hirate, K. and Nakata, Y. (2005) Zaltoprofen inhibits bradykinin-induced responses by blocking the activation of second messenger signaling cascades in rat dorsal root ganglion cells. Neuropharmacology 48, 1035-1042. https://doi.org/10.1016/j.neuropharm.2005.01.011
  163. Tang, H.-B., Inoue, A., Oshita, K. and Nakata, Y. (2004) Sensitization of vanilloid receptor 1 induced by bradykinin via the activation of second messenger signaling cascades in rat primary afferent neurons. Eur. J. Pharmacol. 498, 37-43. https://doi.org/10.1016/j.ejphar.2004.07.076
  164. Tang, H. B., Inoue, A., Iwasa, M., Hide, I. and Nakata, Y. (2006) Substance P release evoked by capsaicin or potassium from rat cultured dorsal root ganglion neurons is conversely modulated with bradykinin. J. Neurochem. 97, 1412-1418. https://doi.org/10.1111/j.1471-4159.2006.03830.x
  165. Thayer, S. A., Perney, T. M. and Miller, R. J. (1988) Regulation of calcium homeostasis in sensory neurons by bradykinin. J. Neurosci. 8, 4089-4097. https://doi.org/10.1523/JNEUROSCI.08-11-04089.1988
  166. Vasko, M., Campbell, W. and Waite, K. (1994) Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture. J. Neurosci. 14, 4987-4997. https://doi.org/10.1523/JNEUROSCI.14-08-04987.1994
  167. Vaughn, A. H. and Gold, M. S. (2010) Ionic mechanisms underlying inflammatory mediator-induced sensitization of dural afferents. J. Neurosci. 30, 7878-7888. https://doi.org/10.1523/JNEUROSCI.6053-09.2010
  168. Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J. B. and McNaughton, P. A. (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol. 534, 813-825. https://doi.org/10.1111/j.1469-7793.2001.00813.x
  169. Vellani, V., Zachrisson, O. and McNaughton, P. A. (2004) Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J. Physiol. 560, 391-401. https://doi.org/10.1113/jphysiol.2004.067462
  170. Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V. and Nilius, B. (2004) The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels. Nature 430, 748-754. https://doi.org/10.1038/nature02732
  171. Vyklicky, L., Vlachova, V., Vitaskova, Z., Dittert, I., Kabat, M. and Orkand, R. (1999) Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat. J. Physiol. 517, 181-192. https://doi.org/10.1111/j.1469-7793.1999.0181z.x
  172. Walter, T., Chau, T. and Weichman, B. (1989) Effects of analgesics on bradykinin-induced writhing in mice presensitized with PGE 2. Agents Actions 27, 375-377. https://doi.org/10.1007/BF01972826
  173. Wang, M. M., Reynaud, D. and Pace-Asciak, C. R. (1999) In vivo stimulation of 12(S)-lipoxygenase in the rat skin by bradykinin and platelet activating factor: formation of 12(S)-HETE and hepoxilins, and actions on vascular permeability. Biochim. Biophys. Acta 1436, 354-362. https://doi.org/10.1016/S0005-2760(98)00128-3
  174. Wang, S., Dai, Y., Fukuoka, T., Yamanaka, H., Kobayashi, K., Obata, K., Cui, X., Tominaga, M. and Noguchi, K. (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131, 1241-1251. https://doi.org/10.1093/brain/awn060
  175. Wang, S., Joseph, J., Ro, J. Y. and Chung, M. K. (2015) Modality-specific mechanisms of protein kinase C-induced hypersensitivity of TRPV1: S800 is a polymodal sensitization site. Pain 156, 931-941. https://doi.org/10.1097/j.pain.0000000000000134
  176. Weinreich, D., Koschorke, G., Undem, B. and Taylor, G. (1995) Prevention of the excitatory actions of bradykinin by inhibition of PGI2 formation in nodose neurones of the guinea-pig. J. Physiol. 483, 735-746. https://doi.org/10.1113/jphysiol.1995.sp020618
  177. Weinreich, D. and Wonderlin, W. (1987) Inhibition of calcium-dependent spike after-hyperpolarization increases excitability of rabbit visceral sensory neurones. J. Physiol. 394, 415-427. https://doi.org/10.1113/jphysiol.1987.sp016878
  178. Weng, H.-J., Patel, K. N., Jeske, N. A., Bierbower, S. M., Zou, W., Tiwari, V., Zheng, Q., Tang, Z., Mo, G. C. and Wang, Y. (2015) Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. Neuron 85, 833-846. https://doi.org/10.1016/j.neuron.2014.12.065
  179. Whalley, E., Clegg, S., Stewart, J. and Vavrek, R. (1987) The effect of kinin agonists and antagonists on the pain response of the human blister base. Naunyn Schmiedebergs Arch. Pharmacol. 336, 652-655. https://doi.org/10.1007/BF00165756
  180. Wu, Z.-Z. and Pan, H.-L. (2007) Role of TRPV1 and intracellular $Ca^{2+}$ in excitation of cardiac sensory neurons by bradykinin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R276-R283. https://doi.org/10.1152/ajpregu.00094.2007
  181. Yamaguchi-Sase, S., Hayashi, I., Okamoto, H., Nara, Y., Matsuzaki, S., Hoka, S. and Majima, M. (2003) Amelioration of hyperalgesia by kinin receptor antagonists or kininogen deficiency in chronic constriction nerve injury in rats. Inflamm. Res. 52, 164-169. https://doi.org/10.1007/s000110300067
  182. Yanaga, F., Hirata, M. and Koga, T. (1991) Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim. Biophys. Acta 1094, 139-146. https://doi.org/10.1016/0167-4889(91)90001-E
  183. Yu, S. and Ouyang, A. (2009) TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G255-G265. https://doi.org/10.1152/ajpgi.90530.2008
  184. Zahner, M. R., Li, D. P., Chen, S. R. and Pan, H. L. (2003) Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J. Physiol. 551, 515-523. https://doi.org/10.1113/jphysiol.2003.048207
  185. Zhang, X., Li, L. and McNaughton, P. A. (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59, 450-461. https://doi.org/10.1016/j.neuron.2008.05.015
  186. Zylka, M. J., Rice, F. L. and Anderson, D. J. (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17-25. https://doi.org/10.1016/j.neuron.2004.12.015

Cited by

  1. PIP 2 Mediated Inhibition of TREK Potassium Currents by Bradykinin in Mouse Sympathetic Neurons vol.21, pp.2, 2018, https://doi.org/10.3390/ijms21020389
  2. Endogenous and Exogenous Vanilloids Evoke Disparate TRPV1 Activation to Produce Distinct Neuronal Responses vol.11, pp.None, 2018, https://doi.org/10.3389/fphar.2020.00903
  3. Contribution of KCNQ and TREK Channels to the Resting Membrane Potential in Sympathetic Neurons at Physiological Temperature vol.21, pp.16, 2018, https://doi.org/10.3390/ijms21165796
  4. A Systematic Review of Molecular Imaging Agents Targeting Bradykinin B1 and B2 Receptors vol.13, pp.8, 2020, https://doi.org/10.3390/ph13080199
  5. Peripheral Pain Modulation of Chrysaora pacifica Jellyfish Venom Requires Both Ca2+ Influx and TRPA1 Channel Activation in Rats vol.38, pp.4, 2018, https://doi.org/10.1007/s12640-020-00282-1
  6. A Hydroethanolic Leaf Extract of Persicaria lanigera Possesses Antinociceptive Activity through Cytokine and Glutamatergic Pathways In Vivo vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5586789
  7. GPR171 Activation Modulates Nociceptor Functions, Alleviating Pathologic Pain vol.9, pp.3, 2018, https://doi.org/10.3390/biomedicines9030256
  8. Junctophilin‐4 facilitates inflammatory signalling at plasma membrane‐endoplasmic reticulum junctions in sensory neurons vol.599, pp.7, 2018, https://doi.org/10.1113/jp281331
  9. The role of oxytocin, vasopressin, and their receptors at nociceptors in peripheral pain modulation vol.63, pp.None, 2018, https://doi.org/10.1016/j.yfrne.2021.100942