• Title/Summary/Keyword: excavations

Search Result 229, Processing Time 0.021 seconds

Development of Productivity-based Estimating Tool for Fuel Use and Emissions from Earthwork Construction Activities

  • Hajji, Apif M.;Lewis, Michael Phil
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.58-65
    • /
    • 2013
  • Earthwork activities are typically performed by heavy duty diesel (HDD) construction equipment that consumes large quantities of diesel fuel use and emits large quantities of pollutants, including nitrogen oxides (NOx), particulate matters (PM), hydrocarbon (HC), carbon monoxide (CO), and carbon dioxide ($CO_2$). This paper presents the framework for a model that can be used to estimate the production rate, activity duration, total fuel use, and total pollutants emissions for earthwork activities. A case study and sensitivity analysis for an excavator performing excavations are presented. The tool is developed by combining the multiple linear regressions (MLR) approach for modeling the productivity with the EPA's NONROAD model. The excavator data from RSMeans Heavy Construction Data were selected to build the productivity model, and emission factors of all type of pollutants from NONROAD model were used to estimate the total fuel use and emissions. The MLR model for the productivity rate can explain 92% of the variability in the data. Based on the model, the fuel use and emissions of excavator increase as the trench depth increase, but as the bucket size increase, the fuel use and emissions decrease.

IT Model to Calculate Required Equipments for Excavation Work in Construction Projects

  • Mahajan, Darshan A.;Rajput, Babalu L.
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.4
    • /
    • pp.1-4
    • /
    • 2013
  • Excavation is most commonly used activity in all construction projects. All contracting agencies prefer to use bigger and heavier excavators and dumpers on site to do excavations if quantity of excavation is huge. Estimation of required number of excavators and dumpers for completion of excavation could be rather a tedious process involving repetitive calculation on which professionals spend their valuable time. As the Information Technology is highly involved in construction section there os need to have IT model for estimation of number of excavators and dumpers. The developed model is useful to calculate required equipments within short period of time. The purpose of the developed IT model is to save the time and efforts of the construction professional. The paper discusses about model which can be used on site to estimate numbers of excavators and dumpers required for completion of certain quantity of excavation within the given time. The calculation considers various existing formulas and method to generate the output. This information could certainly be useful in planning equipments on construction project sites. The tool is user friendly where any non IT background person can use it on construction sites.

A Study on Chinese Ancient Garden -focus on Qin, Han, Sui, Tang Dynasties- (중국 고대 원림에 관한 연구: 진, 선한, 수, 당대를 중심으로)

  • 박경자;양병이
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.119-129
    • /
    • 1999
  • It may be said that ancient wild Chinese garden had been founded during Qin dynasty and completed through Han, Sui and Tang dynasties. At first used as hunting areas for kings, the ancient resort forests began to take forms of garden. They dug a pond in the garden and made a simulated mountains with the soil that came from the excavations for the pond and suc pavilions has Gyong, Ru, Gak etc. were built around the pond. The ponds were different in size from those in Korea, being of the lake-like size. they made three island in the pond, which were the islands of Taoist hermits with supernatural powers, called Bong-lae, Young-ju and Band-jang respectively. the traditional of making those islands began in the Qin era and were completed in the Han era, being descended to posterity as a traditional garden structure of 'three islands in one pond' garden style. Such style was brought to Korea and first appeared as Kung-Nam-Ji in Back-jae kingdom and then brought to Japan, becoming the tradition of constructing ponds from early Heian era. Those lake-like huge Chinese ponds constituted the core of ancient garden where various feasts took place. Such ponds were also placed at the center of the gardens and played the roles of feasting garden ponds. Through the above-mentioned studies of the ancient Chines garden, the origin of them and the influence of the ancient Chinese ponded garden upon those of Korea and Japan were investigated.

  • PDF

Non-electric Detonator Initiation System Using Spark Trigger (스파크 트리거에 의한 비전기식 뇌관의 기폭 시스템)

  • Yu, Seon-Jin;Kang, Dae-Jin;Kim, Nam-Soo;Jang, Hyong-Doo;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • Non-electric detonator has been used in underground excavations because of its strong resistance against electric impacts. However, electric detonator is often used to initiate the non-electric detonator instead of using an exclusive non-electric blasting machine due to economical reason. Spark Trigger is introduced as a solution of unexpected explosive hazard from using an electric detonator as an initiator of non-electric system. Since Spark Trigger System does not need expensive tube and no plastic waste is left, this system is proved to be more economical and eco-friendly initiate system than the standard non-electric initiating system.

A Case Study on the Large Scaled Load Test of Soil Nailed Walls (쏘일네일링 벽체에 대한 대형파괴재하시험 사례)

  • Kang, In-Gyu;Ryu, Jeong-Su;Kwon, Young-Ho;Lee, Seung-Hyun;Park, Shin-Young
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.135-145
    • /
    • 2006
  • Soil nailing systems are generally many used in underground excavations and reinforcements of slopes since the first construction as a temporary retaining wall in 1993, Korea. In recently, they are many attempts to expand the permanent reinforcements of slopes However, experimental studies related to soil nailing systems are insufficient Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nail walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out

  • PDF

Archaeological Investigations in Urban Areas through Combined Application of Surface ERT and GPR Techniques

  • Papadopoulos, Nikos;Yi, Myeong-Jong;Sarris, Apostolos;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.113-118
    • /
    • 2008
  • Among the geophysical methods, Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) comprise the most promising techniques in resolving buried archaeological structures in urban territories. In this work, two case studies which involve an integrated geophysical survey employing the surface three dimensional (3D) ERT and GPR techniques, in order to archaeologically characterize the investigated areas, are presented. Totally more than 4000 square meters were investigated from the test field sites, which are located at the centre of two of the most populated cities of the island of Crete, in Greece. The ERT and the GPR data were collected along dense and parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way applying specific filters to the data in order to enhance their information context. Finally, horizontal depth slices representing the 3D variation of the physical properties were created and the geophysical anomalies were interpreted in terms of possible archaeological structures. The subsequent excavations in one of the sites verified the geophysical results, enhancing the applicability of ERT and GPR techniques in the archaeological exploration of urban territories.

  • PDF

A Study on the Rapid Construction Method for Ground Excavation (지반굴착을 위한 급속시공 방안 연구)

  • Sim, Jae-Uk;Son, Sung-Gon;An, Hyung-Jun;Kim, In-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1251-1258
    • /
    • 2008
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall(SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below dredge level, tied together at head of soldier piles and landslide stabilizing piles by beams. There are three types of excavation wall structures: standard method for medium retained heights(<8.0m), internal excavation method and slope excavation method for deep-excavation applications(>8.0m). In the present study, the measured data from seven different sites which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea.

  • PDF

Design and Construction Problems of Semi-Shield Method (SEMI-SHIELD 공법의 설계 및 시공상 문제점)

  • Kim, Jong-In;Jung, Sung-Nam;Park, Yeong-Geon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1275-1282
    • /
    • 2009
  • The tunnel excavations are used for construction of common utility tunnel, electric tunnel, communication line tunnel, water supply and public sewerage pile line in urban area. The trench cut methods were mainly used in the past, but now, tunneling method is more being used. The tunnel excavation method like as NATM, Messer-Shield, Semi-Shield Methods are being applied to small section tunnel in Korea. The actual construction results of seme-shield method are increasing due to simplified construction process and reduced noise and vibration. And also this method is being used frequently in waterway tunnel and construction of prevention flooding recently. The seme-shield method design guideline is absence except for electric line tunnel construction in Korea, because of the semi-shield method was developed in Europe and Japan. In the prescriptive design, engineer's subjects are tending to intervene, because of absence of standard and specification for details. Therefore, Design and Construction Problems of Semi-Shield Method were described and construction trouble was introduced for exam. These problem and construction troubles have to be examined thoroughly in advance.

  • PDF

Evaluations of load-deformation behavior of soil nail using hyperbolic pullout model

  • Zhang, Cheng-Cheng;Xu, Qiang;Zhu, Hong-Hu;Shi, Bin;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.277-292
    • /
    • 2014
  • Soil nailing, as an effective stabilizing method for slopes and excavations, has been widely used worldwide. However, the interaction mechanism of a soil nail and the surrounding soil and its influential factors are not well understood. A pullout model using a hyperbolic shear stress-shear strain relationship is proposed to describe the load-deformation behavior of a cement grouted soil nail. Numerical analysis has been conducted to solve the governing equation and the distribution of tensile force along the nail length is investigated through a parametric study. The simulation results are highly consistent with laboratory soil nail pullout test results in the literature, indicating that the proposed model is efficient and accurate. Furthermore, the effects of key parameters, including normal stress, degree of saturation of soil, and surface roughness of soil nail, on the model parameters are studied in detail.

Development of fracture face mapping algorithm and its applications to the design of various engineering and environmental works. (토목설계 및 시공분야 지반조사를 위한 절리 단면 영상법 개발 및 그의 응용사례)

  • 김중열;김유성;김기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.119-126
    • /
    • 2002
  • Fractures, especially faults have most significant influence on the difficulties encountered in various engineering and mining works, because they can give rise to inevitable reductions in shear strength as well as large increase in permeability. Thus, before underground access is possible, it is desirable to estimate the distribution and geometry of fractures in advance, if reliable structural data from e.g. Televiewer tool are available. To this end, fracture face mapping is just the evaluation method used to form a fracture image determined by intersecting of each fracture plane with a selected plane section of a rock mass, assuming that all fractures be planar with fixed-aperture. Although many fractures are geometrically complex and others are altered chemically, according to the abundant experiments in recent years, it would seem that the technique could be applied to benefit the design of numerous engineering works such as slope stability, tunnel excavations, dam foundation and diverse environmental works. This paper presents at first an evaluation algorithm for fracture face mapping and then concludes with various representative examples of applications.

  • PDF