• Title/Summary/Keyword: excavation support system

Search Result 134, Processing Time 0.027 seconds

Soft Sedimentary Rock Slopes Design of Diversion Tunnel

  • Jee, Warren Wangryul
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.63-79
    • /
    • 2007
  • Several remedial works were attempted to stabilize the collapsed area of the inlet slopes of diversion tunnel, but prevention of any further movement was being only carried out at beginning stage by filling the area with aggregates and rock debris, after several cracks had been initiated and developed around the area. The extra specialty developed folding zone is consisted with highly weathered Greywacke and Black shale. The suggested solution is to improve the properties of the rock mass of failed area by choosing the optimum level of reinforcement through the increment of slope rock support design so as to control the movement of slopes during the re-excavation. The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia. The power station will consist of a 210m height Concrete Faced Rockfill Dam. During the construction of the dam and the power facilities the Balui River has to be diverted of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four defined Rock Mass Type (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each "global" slope without any rock support and shotcrete system. In the second stage, it is calculated for each "local" slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

A Study on the Support System of Large Caverns Under High Initial Stress (과지압 하에 있는 대규모 지하공동의 지보 시스템에 관한 연구)

  • 박연준;유광호;최영태;김재용
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.154-166
    • /
    • 2004
  • A numerical stability analysis was conducted on the large oil storage caverns excavated in a rock mass under high initial horizonal stress. The behaviors of the surrounding rock mass, rockbolts, and shotcrete were analyzedr and stability of the support members were assessed. For a proper support system design, the effect of the modelling technique, cavern shape and rockbolt length on the stability of the cavern was investigated. Results show that installation timing of supports and the change in cavern shape due to stepwise excavation affect the stress induced in support members. Also found was desperate need for a numerical technique which can properly reflect the behavior of the steel fiber reinforced shotcrete.

A Study on the Approach Method for the Excavation of the Outstanding Projects in the Agricultural Sector (농업분야 국제개발협력 우량사업 발굴을 위한 접근법 연구)

  • Ji, Seong Tae
    • Journal of Agricultural Extension & Community Development
    • /
    • v.21 no.3
    • /
    • pp.181-213
    • /
    • 2014
  • This study analyzes the approach method for the excavation of the outstanding projects in order to improve the ODA quality in the agricultural sector in a situation of the recent quantitative expansion of the Korea's ODA. This analysis is based on the ODA development paradigm of the international society, Korea's ODA development trends, the problems of system, procedure and contents. The analysis drew five approaches, such as an approach based on the strategies, an approach based on the comparative advantage, an approach based on the partnership, an approach based on the networking, an approach of modeling. If each approach method is applied to the excavation of project closely linked to other approach methods, it would be easier to excavate outstanding project. And it could lead to enhancement of project effectiveness. This study introduced the KAPEX program which excavate the customized ODA projects through the application of these approach methods.

Simulating Depositional Changes in River and It's Prediction (그래픽 모사기법을 이용한 하천 변천의 재현과 예측)

  • Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.579-592
    • /
    • 1994
  • A case study is presented where a fluvial system is modeled in three dimensions and compared to data gathered from a study of the Arkansas River. The data is unique in that it documents changes that affected a straight channel that was excavated within the river by the U.S. Army Corps of Engineers. Excavation plan maps and sequential aerial photographs show that the channel underwent massive deposition and channel migration as it returned to a more natural, meandering path. These records illustrate that stability of fluvial system can be disrupted either by catastrophic events such as floods or by subtle events such as the altering of a stream's equilibrium base level or sediment load. SEDSIM, Stanford's Sedimentary Basin Simulation Model, is modified and used to model the Arkansas River and the geologic processes that changed in response to changing hydraulic and geologic parameters resulting from the excavation of the channel. Geologic parameters such as fluid and sediment discharge, velocity, transport capacity, and sediment load are input into the model. These parameters regulate the frequency distribution and sizes of sediment grains that are eroded, transported and deposited. The experiments compare favorably with field data, recreating similar patterns of fluid flow and sedimentation. Therefore, simulations provide insight for understanding and spatial distribution of sediment bodies in fluvial deposits and the internal sedimentary structure of fluvial reservoirs. These techniques of graphic simulation can be contributed to support the development of the new design criteria compatible with natural stream processes, espacially drainage problem to minimize environmental disruption.

  • PDF

Characterizing Business Strategy in a New Ecosystem of Big Data (빅데이터 산업 활성화 전략 연구)

  • Yoo, Soonduck;Choi, Kwangdon;Shin, Sungyoung
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • This research describes strategies to promote the growth of the Big Data industry and the companies within the ecosystem. In doing so, we identify the roles and responsibilities of various objects of this ecosystem and Big Data concepts. We describe the five components of the Big Data ecosystem: governance, data holders, service users, service providers and infrastructure providers. Related to the Big Data industry, the paper discusses 13 business strategies between the five components in the ecosystem. These strategies directly respond to areas of research by the Big Data industry leading experts on its early development. These strategies focus on how companies can gain competitive advantages in a growing new business environment of Big Data. The strategy topics are as follows: 1) the government's long term policy, 2) building Big Data support centers, 3) policy support and improving the legal system, 4) improving the Privacy Act, 5) increasing the understanding of Big Data, 6) Big Data support excavation projects, 7) professional manpower education, 8) infrastructure system support, 9) data distribution and leverage support, 10) data quality management, 11) business support services development, 12) technology research and excavation, 13) strengthening the foundation of Big Data technology. Of the proposed strategies, establishing supportive government policies is essential to the successful growth of thee Big Data industry. This study fosters a better understanding of the Big Data ecosystem and its potential to increases the competitive advantage of companies.

Effect of utilizing pressurized ring beam system in modern rock TBM: I. Numerical study (현대식 Rock TBM에서 가압형 링빔의 효과 연구: I. 수치해석적 연구)

  • Kwak, Yun-Suk;Kang, Gi-Don;Kim, Do-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.55-77
    • /
    • 2012
  • A Modern Rock TBM is a tunnel excavation method combining the conventional tunnelling method with the mechanized tunnelling method. It is a hybrid system that excavates a tunnel with TBM and supports the ground by ring beam, wire mesh, rock bolt, shotcrete, i.e., conventional tunnelling method. In the Modern Rock TBM, a ring beam is similar to a steel rib in NATM in the way that uses H-beam. But using a ring beam is more effective than a steel rib because it is installed in a closed-circle. Therefore, improving the performance of the ring beam is a key factor for achieving tunnel stability. In this respect, this study introduces a pressurized ring beam that might be functioning more effectively by confining convergence during tunnel excavation. In order to verify the effect of the pressurized ring beam, a three-dimensional numerical analysis was conducted. The numerical analysis confirms an increase in the minimum principal stress and reduction in the plastic strain that triggers excessive displacement. The analysis result also indicates a decrease in the relative displacement occurring after installing the ring beam, and expansion in spacing between the ring beams.

A Basic Study on Change Aspect of Displacement and Stress in NATM Tunnel Excavation (터널굴착 중 발생하는 변위 및 응력의 변화양상에 대한 기초적인 연구)

  • Jeong In Cheol;Park Jong Kwan;Lee Jun Seok;Lee Seung Do
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.860-865
    • /
    • 2005
  • In Korea, NATM (New Austrian Tunneling Method) has widely been used in order for constructing tunnels. The major support materials of the method are the shotcrete and rock bolt together with the arch-shaped tunnel section, which ensure the inherent strength of the rock masses. One of the most important features of the method is the feedback system between tunnel analyses and measurements, such as tunnel displacement and support stresses. This study, therefore, attempts to examine the difference in displacement and stresses between numerical results. and measurements in order for more practical design and construction of tunnels.

  • PDF

Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis (수치해석에 의한 암반특성의 변화가 터널에 미치는 영향)

  • Kwon, Soon-Sub;Lee, Jong-Sun;Kim, Kyoung-Ho;Lee, Jun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.375-378
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5\sim1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

A study on the determination of shear strength and the support design of pre-failed rock slope (일차파괴된 암반사면의 전단강도 및 보강설계법 고찰)

  • 조태진;김영호
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

Effect of Joint Sets on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체에 작용하는 토압에 대한 절리군의 영향)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.59-69
    • /
    • 2015
  • This study examined the magnitude and distribution of earth pressure on the support system in a jointed rock mass due to the different joint sets as well as varying the rock type and joint condition (joint shear strength and joint inclination angle). Based on a physical model test and its numerical simulation, a series of numerical parametric analyses were conducted using a discrete element method. The results showed that the induced earth pressure was affected significantly by a joint set depending on the inclusion of the joint inclination angle, which induces a joint sliding condition, but the number of joint sets alone was not important, even though the earth pressure could be increased slightly as the number of joint sets is increased. In addition, the study results were compared with Peck's earth pressure for soil ground, which indicated that the earth pressure in a jointed rock mass could be considerably different from that in soil ground. The study suggests that the effects of joint sets as well as rock type and joint condition are important factors affecting the earth pressure in a jointed rock mass and they should be considered when designing a support system in a jointed rock mass.