• Title/Summary/Keyword: example matching

Search Result 181, Processing Time 0.025 seconds

Context-Weighted Metrics for Example Matching (문맥가중치가 반영된 문장 유사 척도)

  • Kim, Dong-Joo;Kim, Han-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.43-51
    • /
    • 2006
  • This paper proposes a metrics for example matching under the example-based machine translation for English-Korean machine translation. Our metrics served as similarity measure is based on edit-distance algorithm, and it is employed to retrieve the most similar example sentences to a given query. Basically it makes use of simple information such as lemma and part-of-speech information of typographically mismatched words. Edit-distance algorithm cannot fully reflect the context of matched word units. In other words, only if matched word units are ordered, it is considered that the contribution of full matching context to similarity is identical to that of partial matching context for the sequence of words in which mismatching word units are intervened. To overcome this drawback, we propose the context-weighting scheme that uses the contiguity information of matched word units to catch the full context. To change the edit-distance metrics representing dissimilarity to similarity metrics, to apply this context-weighted metrics to the example matching problem and also to rank by similarity, we normalize it. In addition, we generalize previous methods using some linguistic information to one representative system. In order to verify the correctness of the proposed context-weighted metrics, we carry out the experiment to compare it with generalized previous methods.

Noninformative priors for Pareto distribution

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1213-1223
    • /
    • 2009
  • In this paper, we develop noninformative priors for two parameter Pareto distribution. Specially, we derive Jereys' prior, probability matching prior and reference prior for the parameter of interest. In our case, the probability matching prior is only a first order matching prior and there does not exist a second order matching prior. Some simulation reveals that the matching prior performs better to achieve the coverage probability. A real example is also considered.

  • PDF

On the Development of Probability Matching Priors for Non-regular Pareto Distribution

  • Lee, Woo Dong;Kang, Sang Gil;Cho, Jang Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.333-339
    • /
    • 2003
  • In this paper, we develop the probability matching priors for the parameters of non-regular Pareto distribution. We prove the propriety of joint posterior distribution induced by probability matching priors. Through the simulation study, we show that the proposed probability matching Prior matches the coverage probabilities in a frequentist sense. A real data example is given.

Noninformative priors for the scale parameter in the generalized Pareto distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1521-1529
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the scale parameter is of interest. We developed the rst order and the second order matching priors. We revealed that the second order matching prior does not exist. It turns out that the reference prior and Jeffrey's prior do not satisfy a first order matching criterion, and Jeffreys' prior, the reference prior and the matching prior are different. Some simulation study is performed and a real example is given.

NONINFORMATIVE PRIORS FOR PARETO DISTRIBUTION : REGULAR CASE

  • Kim, Dal-Ho;Lee, Woo-Dong;Kang, Sang-Gil
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.27-37
    • /
    • 2003
  • In this paper, we develop noninformative priors for two parameter Pareto distribution. Specially, we derive Jeffrey's prior, probability matching prior and reference prior for the parameter of interest. In our case, the probability matching prior is only a first order and there does not exist a second order matching prior. Some simulation reveals that the matching prior performs better to achieve the coverage probability. And a real example will be given.

  • PDF

Noninformative priors for the common mean in log-normal distributions

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1241-1250
    • /
    • 2011
  • In this paper, we develop noninformative priors for the log-normal distributions when the parameter of interest is the common mean. We developed Jeffreys' prior, th reference priors and the first order matching priors. It turns out that the reference prior and Jeffreys' prior do not satisfy a first order matching criterion, and Jeffreys' pri the reference prior and the first order matching prior are different. Some simulation study is performed and a real example is given.

Noninformative Priors for the Stress-Strength Reliability in the Generalized Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.467-475
    • /
    • 2011
  • This paper develops the noninformative priors for the stress-strength reliability from one parameter generalized exponential distributions. When this reliability is a parameter of interest, we develop the first, second order matching priors, reference priors in its order of importance in parameters and Jeffreys' prior. We reveal that these probability matching priors are not the alternative coverage probability matching prior or a highest posterior density matching prior, a cumulative distribution function matching prior. In addition, we reveal that the one-at-a-time reference prior and Jeffreys' prior are actually a second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study and a provided example.

Noninformative priors for the log-logistic distribution

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.227-235
    • /
    • 2014
  • In this paper, we develop the noninformative priors for the scale parameter and the shape parameter in the log-logistic distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is a highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior for both parameters, but Jerffrey's prior is not a second order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative priors for stress-strength reliability in the Pareto distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.115-123
    • /
    • 2011
  • In this paper, we develop the noninformative priors for stress-strength reliability from the Pareto distributions. We develop the matching priors and the reference priors. It turns out that the second order matching prior does not match the alternative coverage probabilities, and is not a highest posterior density matching or a cumelative distribution function matching priors. Also we reveal that the one-at-a-time reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example is given.

Noninformative Priors for the Ratio of the Lognormal Means with Equal Variances

  • Lee, Seung-A;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.633-640
    • /
    • 2007
  • We develop noninformative priors for the ratio of the lognormal means in equal variances case. The Jeffreys' prior and reference priors are derived. We find a first order matching prior and a second order matching prior. It turns out that Jeffreys' prior and all of the reference priors are first order matching priors and in particular, one-at-a-time reference prior is a second order matching prior. One-at-a-time reference prior meets very well the target coverage probabilities. We consider the bioequivalence problem. We calculate the posterior probabilities of the hypotheses and Bayes factors under Jeffreys' prior, reference prior and matching prior using a real-life example.