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Abstract

In this paper, we develop noninformative priors for the log-normal distributions
when the parameter of interest is the common mean. We developed Jeffreys’ prior, the
reference priors and the first order matching priors. It turns out that the reference priors
and Jeffreys’ prior do not satisfy a first order matching criterion, and Jeffreys’ prior,
the reference prior and the first order matching prior are different. Some simulation
study is performed and a real example is given.
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1. Introduction

The log-normal distribution is used in a wide range of applications, when the multiplica-
tive scale is appropriate and the log-transformation removes the skew and brings about
symmetry of the data distribution (Limpert et al., 2001). Normality is the preferred dis-
tributional assumption in many contexts, and logarithm is often the most commonly used
transformation that an analyst considers to promote it. However, there are instances when
moments, and the expectation in particular, are of interest on the original scale. For exam-
ple, the log-normal distribution is frequently applied to variables in environmental science
(Parkhurst, 1998), occupational health research (Rappaport and Selvin, 1987), health ex-
penditure (Zhou et al., 1997), monetary units (Zabel, 1999; Longford and Pittau, 2006), etc.
The population mean of such a variable may be a much more relevant target for inference
than the population mean of its logarithm.

The present paper focuses on developing noninformative priors for the common mean of
the log-normal distributions. In the absence of sources of information or past data, Bayesian
methods rely on the objective priors or the noninformative priors.

We consider Bayesian priors such that the resulting credible intervals for the common
log-normal mean have coverage probabilities equivalent to their frequentist counterparts.
Although this matching can be justified only asymptotically, our simulation results indicate
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that this is indeed achieved for small or moderate sample sizes as well. This matching idea
goes back to Welch and Peers (1963). Interest in such priors revived with the work of Stein
(1985) and Tibshirani (1989). Among others, we may cite the work of Mukerjee and Dey
(1993), Datta and Ghosh (1995, 1996), Mukerjee and Ghosh (1997).

On the other hand, Bernardo (1979) introduced the reference priors which maximizes
the Kullback-Leibler divergence between the prior and the posterior. Ghosh and Mukerjee
(1992) and Berger and Bernardo (1989,1992) gave a general algorithm to derive a reference
prior by splitting the parameters into several groups according to their order of inferential
importance. This approach is very successful in various practical problems (Kim et al., 2009a;
Kang et al., 2011). Quite often reference priors satisfy the matching criterion described
earlier (Kang et al., 2008; Kim et al., 2009b).

For testing the equality of the two independent log-normal means, Zhou et al. (1997)
have proposed a Z-score test and a nonparametric bootstrap approach. In their study, the
Z-score test is the best among all five tests considered in their paper. But the Z-score test
does not perform well in a range of small sample settings. So Wu et al. (2002) proposed
two methods which are based on the signed log-likelihood ratio statistic and the modified
likelihood signed log-likelihood ratio statistic. Wu et al. (2002) showed that the method
based on the modified likelihood signed log-likelihood ratio statistic gives essentially exact
coverage probabilities, and the Z-score test does not perform well in a range of small sample
settings from the simulation results.

For the common log-normal mean, Gupta and Li (2006) derived the maximum likelihood
estimator, and the confidence interval based on the large sample approach. In their simu-
lation results, the coverage probabilities of the confidence interval of the common mean are
lower than the nominal level. And the coverage probabilities closer to the nominal level as
the sample sizes get larger. Tian and Wu (2007) developed an approach for the confidence
interval estimation and hypothesis testing using the concept of generalized confidence inter-
val and generalized p-values. Tian and Wu (2007) showed that the generalized confidence
interval estimates tend to be slightly conservative as sample sizes are small and become
closer to the nominal level as sample sizes increase, and the generalized approach provides
much better confidence interval estimates than the large sample approach.

The outline of the remaining sections is as follows. In Section 2, we develop the first order
probability matching priors for the common mean. Next we derive Fisher information ma-
trix, and also derive the reference priors for the common mean. It turns out that Jeffreys’
prior, the reference priors and the first order matching priors are different. In Section 3,
We provide that the propriety of the posterior distribution for a general class of prior dis-
tributions which include Jeffreys’ prior, the reference prior as well as first order matching
prior. In Section 4, simulated frequentist coverage probabilities under the proposed priors
are given. A real example is given.

2. The noninformative priors

2.1. The probability matching priors

Let X = (X1, · · · , Xn) be a random sample of size n from a log-normal population with
parameters µ1 and σ2

1 , and let Y = (Y1, · · · , Ym) be a random sample of size m from a log-
normal population with parameters µ2 and σ2

2 . That is, logXi is normally distributed with
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mean µ1 and variance σ2
1 , and log Yi is normally distributed with mean µ2 and variance σ2

2 .
Then common mean is η = exp

(
µi + σ2

i /2
)
, i = 1, 2, and this common mean is of interest.

The problem for this common mean in developing of the noninformative priors is equivalent
to µ = µi + σ2

i /2, i = 1, 2.
For a prior π, let θ1−α1 (π;X) denote the (1− α)th percentile of the posterior distribution

of θ1, that is,

Pπ[θ1 ≤ θ1−α1 (π;X)|X] = 1− α, (2.1)

where θ = (θ1, · · · , θt)T and θ1 is the parameter of interest. We want to find priors π for
which

P [θ1 ≤ θ1−α1 (π;X)|θ] = 1− α+ o(n−r). (2.2)

for some r > 0, as n goes to infinity. Priors π satisfying (2.2) are called matching priors. If
r = 1/2, then π is referred to as a first order matching prior, while if r = 1, π is referred to
as a second order matching prior.

In order to find such matching priors π, let

θ1 = µ, θ2 = µ− 1

2
σ2
1 − 2 log σ1 and θ3 = µ− 1

2
σ2
2 − 2 log σ2.

The Jacobian matrix of this transformation is

∂(θ1, θ2, θ3)

∂(µ, σ1, σ2)
=

 1 0 0
1 − 2

σ1
− σ1 0

1 0 − 2
σ2
− σ2

 . (2.3)

Therefore the inverse of the expected Fisher information matrix can be written as

I−1(θ1, θ2, θ3) =

(
∂(θ1, θ2, θ3)

∂(µ, σ1, σ2)

)
I−1(µ, σ1, σ2)

(
∂(θ1, θ2, θ3)

∂(µ, σ1, σ2)

)t

=


σ2
1σ

2
2(2+σ

2
1)(2+σ

2
2)

2[mσ2
1(2+σ

2
1)+nσ

2
2(2+σ

2
2)]

0

0
2+σ2

1

n 0

0 0
2+σ2

2

m

 . (2.4)

By (2.4), the Fisher information matrix is

I(θ1, θ2, θ3) =


2[mσ2

1(2+σ
2
1)+nσ

2
2(2+σ

2
2)]

σ2
1σ

2
2(2+σ

2
1)(2+σ

2
2)

0

0 n
2+σ2

1
0

0 0 m
2+σ2

2

 . (2.5)

Thus θ1 is orthogonal to θ2 and θ3 in the sense of Cox and Reid (1987). Following Tibshirani
(1989), the class of first order probability matching prior is characterized by

πm(θ1, θ2, θ3) ∝ [mσ2
1(2 + σ2

1) + nσ2
2(2 + σ2

2)]
1
2

σ1σ2(2 + σ2
1)

1
2 (2 + σ2

2)
1
2

g(θ2, θ3), (2.6)
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where g(θ2, θ3) > 0 is an arbitrary function differentiable in its argument. We may also note
that the matching prior prior in the original parametrization (µ, σ1, σ2) is given by

πm(µ, σ1, σ2) ∝ σ−21 σ−22 (2 + σ2
1)

1
2 (2 + σ2

2)
1
2 [mσ2

1(2 + σ2
1) + nσ2

2(2 + σ2
2)]

1
2

× g
(
µ− 1

2
σ2
1 − 2 log σ1, µ−

1

2
σ2
2 − 2 log σ2

)
. (2.7)

2.2. The reference priors

The likelihood function of parameters µ, σ1, σ2 is given by

L(µ, σ1, σ2) ∝ σ−n1 σ−m2 exp{−
n∑
i=1

(log xi − µ+
σ2
1

2 )2

2σ2
1

} exp{−
m∑
i=1

(log yi − µ+
σ2
2

2 )2

2σ2
2

}.(2.8)

Based on (2.8), the Fisher information matrix is given by

I(µ, σ1, σ2) =


n
σ2
1

+ m
σ2
2

− n
σ1

−m
σ2

− n
σ1

n
(

1 + 2
σ2
1

)
0

−m
σ2

0 m
(

1 + 2
σ2
2

)
 . (2.9)

We firstly derived the two group reference prior for the parameter grouping {µ, (σ1, σ2)}
where µ is the parameter of interest, and σ1 and σ2 are treated as nuisance parameters. The
reference prior algorithm is described by Berger and Bernardo (1992).

The compact subsets were taken to be Cartesian products of sets of the form

µ ∈ [a1, b1], σ1 ∈ [a2, b2], σ2 ∈ [a3, b3].

In the limit a1 will tend to −∞, a2 and a3 will tend to 0, and bi, i = 1, 2, 3 will tend to ∞.
For the derivation of the reference prior, we obtain the following quantities from the Fisher
information (2.9):

h1 =
2[mσ2

1(2 + σ2
1) + nσ2

2(2 + σ2
2)]

σ2
1σ

2
2(2 + σ2

1)(2 + σ2
2)

and h2 =
nm(2 + σ2

1)(2 + σ2
2)

σ2
1σ

2
2

.

Here, and below, a subscripted Q denotes a function that is constant and does not depend
on any parameters but any Q may depend on the ranges of the parameters.
Step 1. Note that∫ b3

a3

∫ b2

a2

h
1/2
2 dσ1dσ2 =

∫ b3

a3

∫ b2

a2

[
nm(2 + σ2

1)(2 + σ2
2)

σ2
1σ

2
2

]1/2
dσ1dσ2 = (nm)

1
2Q1.

It follows that

πl2(σ1, σ2|µ) = Q−11

(2 + σ2
1)

1
2 (2 + σ2

2)
1
2

σ1σ2
.
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Step 2. Now

El{log h1|µ} =

∫ b3

a3

∫ b2

a2

(2 + σ2
1)

1
2 (2 + σ2

2)
1
2

Q1σ1σ2
log

[
2[mσ2

1(2 + σ2
1) + nσ2

2(2 + σ2
2)]

σ2
1σ

2
2(2 + σ2

1)(2 + σ2
2)

]
dσ1dσ2

= Q21.

It follows that ∫ b1

a1

exp[El{log h1|µ}/2]dµ = Q2 exp{Q21/2}, Q2 = b1 − a1.

Hence

πl1(µ, σ1, σ2) = Q−11 Q−12

(2 + σ2
1)

1
2 (2 + σ2

2)
1
2

σ1σ2
.

Therefore the two group reference prior is

πTR(µ, σ1, σ2) ∝ (2 + σ2
1)

1
2 (2 + σ2

2)
1
2

σ1σ2
. (2.10)

Next we derived the one-at-a-time reference prior for the parameter grouping {µ, σ1, σ2}.
For the derivation of the reference prior, we obtain the following quantities from the Fisher
information (2.9):

h1 =
2[mσ2

1(2 + σ2
1) + nσ2

2(2 + σ2
2)]

σ2
1σ

2
2(2 + σ2

1)(2 + σ2
2)

, h2 = n

(
1 +

2

σ2
1

)
and h3 = m

(
1 +

2

σ2
2

)
.

Step 1. Note that ∫ b3

a3

h
1/2
3 dσ2 =

∫ b3

a3

m
1
2

(
1 +

2

σ2
2

)1/2

dσ2 = (m)
1
2Q1.

It follows that

πl3(σ2|µ, σ1) = Q−11

(
1 +

2

σ2
2

)1/2

.

Step 2. Now

El{log h2|µ, σ1} =

∫ b3

a3

Q−11

(
1 +

2

σ2
2

)1/2

log

[
n

(
1 +

2

σ2
1

)]
dσ2

= log

[
n

(
1 +

2

σ2
1

)]
.

It follows that ∫ b2

a2

exp[El{log h2|µ, σ1}/2]dσ1 = n
1
2Q2.
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Hence

πl2(σ1, σ2|µ) = Q−11 Q−12

(
1 +

2

σ2
1

)1/2(
1 +

2

σ2
2

)1/2

.

Step 3. Now

El{log h1|µ} =

∫ b2

a2

∫ b3

a3

Q−11 Q−12

(
1 +

2

σ2
1

)1/2(
1 +

2

σ2
2

)1/2

× log

[
2[mσ2

1(2 + σ2
1) + nσ2

2(2 + σ2
2)]

σ2
1σ

2
2(2 + σ2

1)(2 + σ2
2)

]
dσ2dσ1

= Q31.

It follows that ∫ b1

a1

exp[El{log h1|µ}/2]dµ = Q3 exp{Q31/2}, Q3 = b1 − a1.

Hence

πl1(µ, σ1, σ2) = Q−11 Q−12 Q−13

(
1 +

2

σ2
1

)1/2(
1 +

2

σ2
2

)1/2

.

Thus the one-at-a-time reference prior is

πOR(µ, σ1, σ2) ∝ σ−11 σ−12 (σ2
1 + 2)1/2(σ2

2 + 2)1/2. (2.11)

Note that the two group reference prior and the one-at-a-time reference prior are the same.
Also from the Fisher information (2.9), Jeffreys’ prior is

πJ(µ, σ1, σ2) ∝ σ−21 σ−22 [mσ2
1(2 + σ2

1) + nσ2
2(2 + σ2

2)]
1
2 . (2.12)

Notice that the matching priors (2.7) include many different matching priors because of
the arbitrary selection of the function g. And for some functions, there does not seem to
be any improvement in the coverage probabilities with these posteriors. So we consider a
particular first order matching prior where g is a constant in matching priors (2.7). This
prior is given by

πm(µ, σ1, σ2) ∝ σ−21 σ−22 (2 + σ2
1)

1
2 (2 + σ2

2)
1
2 [mσ2

1(2 + σ2
1) + nσ2

2(2 + σ2
2)]

1
2 . (2.13)

Remark 2.1 Note that Jeffrey’s prior, the first order matching priors and the reference
priors are different each other.

3. Propriety of the posterior distribution

We investigate the propriety of posteriors for a general class of priors which include Jef-
freys’ prior (2.12), the reference prior (2.11) and the first order matching prior (2.13). We
consider the class of priors

π(µ, σ1, σ2) ∝ [mσ2
1(2 + σ2

1) + nσ2
2(2 + σ2

2)]a
(2 + σ2

1)c(2 + σ2
2)c

σb1σ
b
2

, (3.1)
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where a ≥ 0, b > 0 and c ≥ 0. The following general theorem can be proved.

Theorem 3.1 The posterior distribution of (µ, σ1, σ2) under the prior π, (3.1), is proper
if n− 4a+ b− 2c− 2 > 0 and m− 4a+ b− 2c− 2 > 0.

Proof. Note that the joint posterior for µ, σ1 and σ2 given x and y is

π(µ, σ1, σ2|x,y) ∝ σ−n−b1 σ−m−b2 [mσ2
1(2 + σ2

1) + nσ2
2(2 + σ2

2)]a(2 + σ2
1)c(2 + σ2

2)c

× exp

{
−

n∑
i=1

(log xi − µ+
σ2
1

2 )2

2σ2
1

−
m∑
i=1

(log yi − µ+
σ2
2

2 )2

2σ2
2

}
. (3.2)

Firstly, we integrate with respect to µ from (3.2). Then

π(σ1, σ2|x,y) ∝ σ−n−b1 σ−m−b2 [mσ2
1(2 + σ2

1) + nσ2
2(2 + σ2

2)]a(2 + σ2
1)c(2 + σ2

2)c

×
(
n

σ2
1

+
m

σ2
2

)− 1
2

exp

{
− S2

1

2σ2
1

− S2
2

2σ2
2

}
exp

{
−nm(σ2

1 + 2x̄− σ2
2 − 2ȳ)2

8(mσ2
1 + nσ2

2)

}
≤ σ−n−b1 σ−m−b2 [mσ2

1(2 + σ2
1) + nσ2

2(2 + σ2
2)]a(2 + σ2

1)c(2 + σ2
2)c

×
(
n

σ2
1

+
m

σ2
2

)− 1
2

exp

{
− S2

1

2σ2
1

− S2
2

2σ2
2

}
≡ π′(σ1, σ2|x,y), (3.3)

where S2
1 =

∑n
i=1(log xi − x̄)2, x̄ =

∑n
i=1 log xi/n, S2

2 =
∑m
i=1(log yi − ȳ)2 and ȳ =∑m

i=1 log yi/m. If 0 < σ1 < 1 and 0 < σ2 < 1 then

π′(σ1, σ2|x,y) ≤ k1σ−n−b1 σ−m−b2 exp

{
− S2

1

2σ2
1

− S2
2

2σ2
2

}
. (3.4)

Therefore the (3.4) is proper, if n+ b− 1 > 0 and m+ b− 1 > 0. Here k1 is a constant. If
σ1 ≥ 1 and σ2 ≥ 1 then

π′(σ1, σ2|x,y)dσ1dσ2 ≤ k2σ−n+4a−b+2c+1
1 σ−m+4a−b+2c+1

2 exp

{
− S2

1

2σ2
1

− S2
2

2σ2
2

}
. (3.5)

Then the (3.5) is proper, if n− 4a+ b− 2c− 2 > 0 and m− 4a+ b− 2c− 2 > 0. Here k2 is
a constant. If 0 < σ1 < 1 and σ2 ≥ 1 then

π′(σ1, σ2|x,y) ≤ k3σ−n−b1 σ−m+4a−b+2c
2 exp

{
− S2

1

2σ2
1

− S2
2

2σ2
2

}
. (3.6)

Therefore the (3.6) is proper, if n + b − 1 > 0 and m − 4a + b − 2c − 1 > 0. Here k3 is a
constant. This completes the proof. �

Theorem 3.2 Under the prior (3.1), the marginal posterior density of µ is given by

π(µ|x,y) ∝
∫ ∞
0

∫ ∞
0

σ−n−b1 σ−m−b2 [mσ2
1(2 + σ2

1) + nσ2
2(2 + σ2

2)]a(2 + σ2
1)c(2 + σ2

2)c

× exp

{
−

n∑
i=1

(log xi − µ+
σ2
1

2 )2

2σ2
1

−
m∑
i=1

(log yi − µ+
σ2
2

2 )2

2σ2
2

}
dσ1dσ2. (3.7)
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Note that actually, normalizing constant for the marginal density of µ required two dimen-
sional integration. Therefore we have the marginal posterior density of µ, and so it is easy
to compute the marginal moment of µ. In Section 4, we investigate the frequentist coverage
probabilities for the πm, πJ and πOR, respectively.

4. Numerical studies

We evaluate the frequentist coverage probability by investigating the credible interval
of the marginal posteriors density of µ under the noninformative prior π given in (3.1)
for several configurations µ, σ1, σ2 and (n,m). That is to say, the frequentist coverage of
a (1 − α)th posterior quantile should be close to 1 − α. This is done numerically. Table
1 gives numerical values of the frequentist coverage probabilities of 0.05 (0.95) posterior
quantiles for the our prior. The computation of these numerical values is based on the
following algorithm for any fixed true (µ, σ1, σ2) and any prespecified probability value α.
Here α is 0.05 (0.95). Let µπ(α|X,Y) be the posterior α-quantile of µ given (X,Y). That
is, F (µπ(α|X,Y)|X,Y) = α, where F (·|X,Y) is the marginal posterior distribution of µ.
Then the frequentist coverage probability of this one sided credible interval of µ is

P(µ,σ1,σ2)(α;µ) = P(µ,σ1,σ2)(0 < µ ≤ µπ(α|X,Y)). (4.1)

The computed P(µ,σ1,σ2)(α;µ) when α = 0.05(0.95) is shown in Table 4.1. In particular, for
fixed (n,m) and (µ, σ1, σ2), we take 10, 000 independent random samples of X and Y from
the log-normal populations.

In Table 4.1, we can observe that the matching prior πm and the reference prior πOR meet
well the target coverage probabilities than Jeffreys’ prior πJ . Also note that the results of
table are not much sensitive to the change of the values of (µ, σ1, σ2). Thus we recommend
to use the matching prior and the reference prior.
Example 4.1 This example is a bioavailability study in which a randomized, parallel-

group experiment (Wu et al., 2002) was conducted with 20 subjects to compare a new test
formulation with a reference formulation of a drug product with a long half-life. Among
other statistical analyses, testing the equality of the means of the two formulations is of
great importance in determining if the two formulations have different bioavailability. The
QQ plots for the original data (Cmax data) and log-transformed data are given in Wu et al.
(2002). As they reported, the Shapiro-Wilk tests for normality on the log-transformed data
give a p-value of 0.595 for the test formulation group and a p-value of 0.983 for the reference
formulation group. Therefore the log transformation normalizes the data.

For testing equal means of Cmax between two formulations, the Z-score test (Zhou et al.,
1997) and r∗-test (Wu et al., 2002) give a two-sided p-value of 0.203 and 0.173, respec-
tively. Therefore we conclude that two means are equal. The Bayes estimates for µ are
6.62799, 6.63230 and 6.64791 for Jeffreys’ prior, the matching prior and the reference prior,
respectively. Also the 95% Bayesian credible intervals for µ are (6.37304, 6.96219), (6.37175,
6.98078) and (6.37637, 7.01571) for Jeffreys’ prior, the matching prior and the reference prior,
respectively. All methods yield almost the same lower bounds, but slightly different upper
bounds. For comparison, the maximum likelihood estimate and the confidence interval by
large sample approach are 6.60751 and (6.35888, 6.85614).
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Table 4.1 Frequentist coverage probability of 0.05 (0.95) posterior quantiles of µ

µ σ1 σ2 n πJ πOR πm

1

1 2

5,5 0.058 (0.904) 0.076 (0.958) 0.071 (0.933)
5,10 0.056 (0.908) 0.073 (0.955) 0.069 (0.933)
10,10 0.046 (0.929) 0.061 (0.957) 0.056 (0.943)
15,20 0.048 (0.935) 0.059 (0.955) 0.056 (0.946)

1 5

5,5 0.064 (0.914) 0.081 (0.965) 0.071 (0.929)
5,10 0.056 (0.912) 0.073 (0.966) 0.064 (0.929)
10,10 0.054 (0.937) 0.066 (0.962) 0.058 (0.944)
15,20 0.048 (0.937) 0.058 (0.957) 0.051 (0.943)

1 10

5,5 0.067 (0.921) 0.089 (0.969) 0.072 (0.933)
5,10 0.062 (0.919) 0.085 (0.969) 0.069 (0.933)
10,10 0.058 (0.939) 0.071 (0.963) 0.062 (0.946)
15,20 0.049 (0.937) 0.061 (0.959) 0.051 (0.944)

10

1 2

5,5 0.061 (0.905) 0.078 (0.955) 0.074 (0.931)
5,10 0.055 (0.910) 0.070 (0.953) 0.067 (0.932)
10,10 0.051 (0.926) 0.066 (0.956) 0.062 (0.943)
15,20 0.047 (0.933) 0.058 (0.955) 0.053 (0.945)

1 5

5,5 0.059 (0.919) 0.078 (0.971) 0.067 (0.935)
5,10 0.061 (0.918) 0.083 (0.968) 0.071 (0.935)
10,10 0.047 (0.932) 0.059 (0.963) 0.051 (0.942)
15,20 0.050 (0.938) 0.061 (0.960) 0.055 (0.946)

1 10

5,5 0.063 (0.919) 0.086 (0.970) 0.069 (0.932)
5,10 0.061 (0.922) 0.081 (0.972) 0.067 (0.934)
10,10 0.052 (0.934) 0.065 (0.964) 0.055 (0.942)
15,20 0.053 (0.940) 0.065 (0.961) 0.057 (0.945)

100

1 2

5,5 0.059 (0.906) 0.075 (0.955) 0.071 (0.930)
5,10 0.051 (0.907) 0.066 (0.949) 0.063 (0.927)
10,10 0.052 (0.925) 0.066 (0.957) 0.061 (0.942)
15,20 0.051 (0.936) 0.063 (0.954) 0.059 (0.946)

1 5

5,5 0.060 (0.914) 0.078 (0.967) 0.068 (0.931)
5,10 0.056 (0.914) 0.072 (0.965) 0.064 (0.929)
10,10 0.053 (0.934) 0.066 (0.962) 0.057 (0.943)
15,20 0.051 (0.940) 0.062 (0.959) 0.055 (0.945)

1 10

5,5 0.061 (0.918) 0.082 (0.967) 0.067 (0.931)
5,10 0.064 (0.923) 0.085 (0.974) 0.070 (0.939)
10,10 0.051 (0.934) 0.066 (0.963) 0.056 (0.942)
15,20 0.052 (0.946) 0.065 (0.966) 0.055 (0.952)

5. Concluding remarks

In the log-normal models, we have found a prior which is a first order matching prior
and reference prior for the common mean. We revealed the two group reference prior and
the one-at-a-time reference prior are the same. It turns out that Jeffrey’s prior, the first
order matching prior and the reference prior are different each other. As illustrated in our
numerical study, the matching prior and the reference prior seem to be the best appropriate
results than Jeffreys’ prior in the sense of asymptotic frequentist coverage property.
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