Communications for Statistical Applications and Methods
/
제10권2호
/
pp.277-289
/
2003
We propose modified exact inferential methods in logistic regression model. Exact conditional distribution in logistic regression model is often highly discrete, and ordinary exact inference in logistic regression is conservative, because of the discreteness of the distribution. For the exact inference in logistic regression model we utilize the modified P-value. The modified P-value can not exceed the ordinary P-value, so the test of size $\alpha$ based on the modified P-value is less conservative. The modified exact confidence interval maintains at least a fixed confidence level but tends to be much narrower. The approach inverts results of a test with a modified P-value utilizing the test statistic and table probabilities in logistic regression model.
표본의 크기가 작아 검정 통계량의 근사분포의 정확성이 의심스러울 때, 정확검정이 종종 사용된다. 정확검정의 장점은 1종의 오류 확률이 항상 유의수준보다 작거나 같음을 보장해 준다는 것이다. 본 논문에서는 정확검 정을 만드는 여러방법, 계산 알고리듬, 그리고 상업용 소프트웨어를 살펴보겠다. 그리고 정확검정에서 얻어지는 exact p-value와 원래 우도(true likelihood)에서 얻어지는 true p-value와의 관계도 살펴보겠다.
범주형 자료에서 순서화된 대립가설을 검정하는 경우는 의학 사회학 경영학 등 다양한 응용분야에서 발생한다. 이러한 검정 방법은 대부분 대표본이론에 근거하여 개발되었다. 하지만 표본크기가 작거나 표본크기가 매우 불균등한 경우 대표본이론에 근거한 검정방법의 제 1종 오류 확률은 목표로 하는 5%와 멀어지는 경우가 많이 발생한다. 본 논문에서는 범주형 자료에서 순서화된 대립가설을 검정하는 경우 표본크기가 작거나 표본크기가 매우 불균등한 경우에 사용될 수 있는 정확검정방법을 소개하고 이에 대한 검정력 및 정확 p-value를 제시할 것이다.
Let p be an odd prime and c be a fixed integer with (c, p) = 1. For each integer a with $1{\leq}a{\leq}p-1$, it is clear that there exists one and only one b with $0{\leq}b{\leq}p-1$ such that $ab{\equiv}c$ mod p. Let N(c, p) denote the number of all solutions of the congruence equation $ab{\equiv}c$ mod p for $1{\leq}a$, $b{{\leq}}p-1$ in which a and $\bar{b}$ are of opposite parity, where $\bar{b}$ is defined by the congruence equation $b{\bar{b}}{\equiv}1$ mod p. The main purpose of this paper is using the mean value theorem of Dirichlet L-functions and the properties of Gauss sums to study the computational problem of one kind mean value function related to $E(c,p)=N(c,p)-{\frac{1}{2}}{\phi}(p)$, and give its an exact computational formula.
Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
Journal of applied mathematics & informatics
/
제27권1_2호
/
pp.441-452
/
2009
In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.
보행은 인간의 기본적이면서 중요한 교통수단이다. 최근 들어 보행자 사고와 관련하여 보행안전이 중요시되고 있다. 이에 본 연구에서는 보행환경요소가 보행안전에 영향을 미치는지 살펴보았다. 선행연구에서 15개의 보행환경요소를 추출하여 설문조사를 실시하였고, 요인분석을 통해 4개의 요인을 추출하였다. 다중회귀분석 결과 F-value는 9.211, P-value는 0.000으로 귀무가설이 기각되어 보행환경요인은 보행안전에 영향력을 미치는 것으로 나타났다. 영향력은 보도특성, 경관성, 상업성, 보행특성의 순으로, 특히 경관성과 보도특성은 유의미한 것으로 분석되었다.
Communications for Statistical Applications and Methods
/
제24권6호
/
pp.663-671
/
2017
Some genetic association tests include an unidentifiable nuisance parameter under the null hypothesis of no association. When the mode of inheritance (MOI) is not specified in a case-control design, the Cochran-Armitage (CA) trend test contains an unidentifiable nuisance parameter. The transmission disequilibrium test (TDT) in a family-based association study that includes the unaffected also contains an unidentifiable nuisance parameter. The hypothesis tests that include an unidentifiable nuisance parameter are typically performed by taking a supremum of the CA tests or TDT over reasonable values of the parameter. The p-values of the supremum test statistics cannot be obtained by a normal or chi-square distribution. A common method is to use a Davies's upper bound of the p-value instead of an exact asymptotic p-value. In this paper, we provide a unified sine-cosine process expression of the CA trend test that does not specify the MOI and the TDT that includes the unaffected. We also present a closed form expression of the exact asymptotic formulas to calculate the p-values of the supremum tests when the score function can be written as a linear form in an unidentifiable parameter. We illustrate how to use the derived formulas using a pharmacogenetics case-control dataset and an attention deficit hyperactivity disorder family-based example.
A geometric construction of an exact algebraic formula for graded partition functions, of which a special one is the classical unrestricted partition function p(n), from a diophantine point of view is presented. Moreover, the involved process allows us to compute the value of a graded partition function in an inductive manner with a geometrically built-in self-error-checking ability at each step for correctness of the computed values of the partition function under consideration.
The main purpose of this paper is to study the hybrid mean value problem involving generalized Dedekind sums, generalized Hardy sums and Kloosterman sums. Some exact computational formulas are given by using the properties of Gauss sums and the mean value theorem of the Dirichlet L-function. A result of W. Peng and T. P. Zhang [12] is extended. The new results avoid the restriction that q is a prime.
유전체 초기단계 연구에서는 비교적 소수의 마이크로어레이 샘플자료로서 실험을 진행하여 심도 깊게 연구해야 할 유전자 부분군(subsets)을 탐색하게 된다. 이러한 과정에서 요구되는 부분군 탐색에 사용되는 분석방법은 다수 샘플자료 분석의 경우와는 매우 다른 방법들이다. 유전자 극소수 샘플자료의 분석에 매우 적절한 방법인 랜덤검정법을 적용하여 정확한 P값(exact P value)의 이산형 분포가 얻어지고, 일양분포 귀무가설의 검정으로 유의 유전자가 존재하는지를 파악할 수 있다. 한 단계 더 나아가 Fuchs와 Kenett (1980)이 제시한 M 검정을 이용하여 이산형 P 값 다항분포에서 이상범주군(outlier cells)을 찾을 수 있으며 이로써 유의 유전자로서의 가능성이 있는 유전자군을 선정한다. 대다수의 마이크로어레이 유전체 연구에서 수 천 또는 수 만개의 유전자가 서로 독립이라고 가정하고 분석하는 것이 문제점이다. 그러나 본 논문에서는 유전자 연관성을 그대로 유지하는 순열에 기초한 랜덤검정법과 M 검정법으로서 유전자 연관성이 분석에 미치는 영향을 모의실험으로 알아보았으며, 그 영향이 결코 미약하지 않음을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.