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A MEAN VALUE FUNCTION AND ITS COMPUTATIONAL

FORMULA RELATED TO D. H. LEHMER’S PROBLEM

Tingting Wang

Abstract. Let p be an odd prime and c be a fixed integer with (c, p) = 1.
For each integer a with 1 ≤ a ≤ p−1, it is clear that there exists one and
only one b with 0 ≤ b ≤ p− 1 such that ab ≡ c mod p. Let N(c, p) denote
the number of all solutions of the congruence equation ab ≡ c mod p for
1 ≤ a, b ≤ p − 1 in which a and b are of opposite parity, where b is
defined by the congruence equation bb ≡ 1 mod p. The main purpose of
this paper is using the mean value theorem of Dirichlet L-functions and
the properties of Gauss sums to study the computational problem of one
kind mean value function related to E(c, p) = N(c, p) − 1

2
φ(p), and give

its an exact computational formula.

1. Introduction

Let q ≥ 3 be an odd number and c be a fixed integer with (c, q) = 1. For
each integer a with 1 ≤ a ≤ q− 1, it is clear that there exists one and only one
b with 0 ≤ b ≤ q − 1 such that ab ≡ c mod q. Let M(c, q) denote the number
of cases in which a and b are of opposite parity. In reference [5], Professor
D. H. Lehmer asked to study M(1, p) or at least to say something nontrivial
about it, where p is a prime. It is known that M(1, p) ≡ 2 or 0 mod 4 when
p ≡ ±1 mod 4. The second author [8] studied the asymptotic properties of
M(1, q), and obtained a sharp asymptotic formula for M(1, q).

Let R(a, p) = M(a, p) − p−1
2 . The first author [12] also studied the mean

square value of R(a, p), and proved the asymptotic formula

p−1
∑

a=1

R2(a, p) =
3

4
p2 +O

(

p · exp

(

3 ln p

ln ln p

))

,

where exp(y) = ey.
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Now, we let p be an odd prime, c be any integer with (c, p) = 1, N(c, p)
denote the number of pairs of integers a, b with ab ≡ c mod p for 1 ≤ a, b ≤ p−1
in which a and b are of opposite parity. We define E(c, p) as follows:

E(c, p) = N(c, p)−
1

2
φ(p).

Some contents related to E(c, p) can also be found in [13]. For convenience,
we assume that E(c, p) = 0, if p | c. The main purpose of this paper is using the
mean value theorem of Dirichlet L-functions and the properties of Gauss sums
to study the computational problem of one kind mean value function related to
E(c, p), and give its an exact computational formula. That is, we shall prove
the following:

Theorem. Let p > 3 be a prime. Then for any integers m ≥ 0 and a, b, c with

(abc, p) = (a2 − 4b, p) = 1, we have the identity

1

p

p−1
∑

r=0

p−1
∑

s=0

E2m+1
(

r2 + ars+ bs2 + c, p
)

=

(

a2 − 4b

p

)

·E2m+1 (c, p) ,

where
(

∗
p

)

denotes the Legendre symbol.

It is clear that
(

a2−4b
p

)

= ±1, if (a2 − 4b, p) = 1. So for any integer c with

(c, p) = 1, E2m+1(c, p) in the above theorem on the mean value transform is
unchanged. Especially taking c = 1, 2 and −1, then from our theorem we may
immediately deduce the following three interesting corollaries:

Corollary 1. Let p > 3 be a prime. Then for any integers m ≥ 0 and a, b with

(ab, p) = (a2 − 4b, p) = 1, we have the identity

1

p

p−1
∑

r=0

p−1
∑

s=0

E2m+1
(

r2 + ars+ bs2 + 1, p
)

= −

(

a2 − 4b

p

)

·
(p− 1)2m+1

22m+1
.

Corollary 2. Let p > 3 be a prime. Then for any integers m ≥ 0 and a, b with

(ab, p) = (a2 − 4b, p) = 1, we have the identity

1

p

p−1
∑

r=0

p−1
∑

s=0

E2m+1
(

r2 + ars+ bs2 + 2, p
)

=

{ (

a2−4b
p

)

, if p ≡ 3 mod 4;

0, if p ≡ 1 mod 4.

Corollary 3. Let p > 3 be a prime. Then for any integers a and b with

(ab, p) = (a2 − 4b, p) = 1, we have the identity

1

p

p−1
∑

r=0

p−1
∑

s=0

E
(

r2 + ars+ bs2 − 1, p
)

=

(

a2 − 4b

p

)

·
p− 1

2
.

For general odd number q ≥ 3, whether there exists a similar formula (as in
Theorem) is an open problem.
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2. Several lemmas

In this section, we shall give several lemmas, which are necessary in the proof
of our theorem. First we have the following:

Lemma 1. Suppose χ is an odd character mod q. Then we have the identity

(1− 2χ(2))

q
∑

a=1

aχ(a) = χ(2)q

q−1
2
∑

a=1

χ(a).

Proof. See reference [4]. �

Lemma 2. Let p be an odd prime. Then for any integer c with (c, p) = 1, we
have the identity

E(c, p) = −
2π−2p

p− 1

∑

χ mod p

χ(−1)=−1

χ(c) · |1− 2χ(2)|2 · |L(1, χ)|
2
,

where
∑

χ mod p

χ(−1)=−1

denotes the summation over all odd characters χ mod p, L(1, χ)

denotes Dirichlet L-function corresponding to character χ.

Proof. From the orthogonality relation for character sums mod p and the def-
inition of N(c, p), we have

N(c, p) =
1

2

p
∑

a=1

p
∑

b=1
ab≡c(p)

(

1− (−1)a+b
)

=
1

2
φ(p) −

1

2

p
∑

a=1

p
∑

b=1
ab≡c(p)

(−1)a+b

=
1

2
φ(p)−

1

2φ(p)

∑

χ mod p

χ(c)

(

p
∑

a=1

(−1)aχ(a)

)(

p
∑

b=1

(−1)bχ(b)

)

=
1

2
φ(p)−

1

2φ(p)

∑

χ mod p

χ(c)

(

p
∑

a=1

(−1)aχ(a)

)(

p
∑

b=1

(−1)bχ(b)

)

=
1

2
φ(p)−

1

2φ(p)

∑

χ mod p

χ(c)

(

p
∑

a=1

(−1)aχ(a)

)(

p
∑

b=1

(−1)bχ(b)

)

=
1

2
φ(p)−

1

2φ(p)

∑

χ mod p

χ(c)

∣

∣

∣

∣

∣

p
∑

a=1

(−1)aχ(a)

∣

∣

∣

∣

∣

2

.(1)

If χ(−1) = 1, then

q
∑

a=1

(−1)aχ(a) = 0.(2)
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If χ(−1) = −1, then

q
∑

a=1

(−1)aχ(a) = 2χ(2)

q−1
2
∑

a=1

χ(a).(3)

If χ(−1) = −1, then from Theorems 12.11 and 12.20 of [1] we also have

1

p

p
∑

b=1

bχ(b) =
i

π
τ(χ)L(1, χ),(4)

where τ(χ) denotes the Gauss sums associated with χ and |τ(χ)| =
√
p.

Combining (1), (2), (3), (4) and Lemma 1 we may immediately deduce

E(c, p) = −
2π−2p

p− 1

∑

χ mod p

χ(−1)=−1

χ(c)|1− 2χ(2)|2 · |L(1, χ)|
2
.

This proves Lemma 2. �

Lemma 3. Let p be an odd prime, a, b and c are integers with (abc, p) =
(a2 − 4b, p) = 1. Then for any non-principal character χ mod p, we have the

identity
p−1
∑

r=0

p−1
∑

s=0

χ
(

r2 + ars+ bs2 + c
)

= χ(c) ·

(

a2 − 4b

p

)

· p,

where
(

∗
p

)

denotes the Legendre symbol.

Proof. Since any non-principal character χ mod p is a primitive character mod
p, so from the properties of Gauss sums we conclude that

p−1
∑

r=0

p−1
∑

s=0

χ
(

r2 + ars+ bs2 + c
)

=
1

τ(χ)

p−1
∑

r=0

p−1
∑

s=0

p−1
∑

t=1

χ (t) e

(

t(r2 + ars+ bs2 + c)

p

)

=
1

τ(χ)

p−1
∑

t=1

χ (t) e

(

ct

p

) p−1
∑

r=0

p−1
∑

s=0

e

(

tr2 + tars+ tbs2

p

)

=
1

τ(χ)

p−1
∑

t=1

χ (t) e

(

ct

p

)

(

p−1
∑

r=0

e

(

tr2

p

)

+

p−1
∑

r=0

p−1
∑

s=1

e

(

t(r2 + ars+ bs2)

p

)

)

=
1

τ(χ)

p−1
∑

t=1

χ (t) e

(

ct

p

)

(

p−1
∑

r=0

e

(

tr2

p

)

+

p−1
∑

r=0

p−1
∑

s=1

e

(

ts2(r2 + ar + b)

p

)

)

=
1

τ(χ)

p−1
∑

t=1

χ (t) e

(

ct

p

)

(

p−1
∑

r=0

e

(

tr2

p

)

− p+

p−1
∑

r=0

p−1
∑

s=0

e

(

ts2(r2 + ar + b)

p

)

)

.(5)
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From Theorem 7.5.4 of Hua’s book [6] we know that for any integer u with
(u, p) = 1, we have

(6)

p−1
∑

r=0

e

(

tr2

p

)

=

(

t

p

) p−1
∑

r=0

e

(

r2

p

)

≡

(

t

p

)

·G(p).

For any integer n with (n, p) = 1, from [6] (§7.8, Theorem 8.2) we also have

(7)

p−1
∑

r=0

(

r2 + n

p

)

= −1.

Therefore,

p−1
∑

r=0

p−1
∑

s=0

e

(

ts2(r2 + ar + b)

p

)

=

p−1
∑

r=0

(

t(r2 + ar + b)

p

)

·G(p) + p ·

p−1
∑

r=0
r2+ar+b≡0 mod p

1

=

(

t

p

)

·G(p) ·

p−1
∑

r=0

(

(2r + a)2 + 4b− a2

p

)

+ p ·

p−1
∑

r=0
(2r+a)2+4b−a2≡0 mod p

1

= −

(

t

p

)

·G(p) +

(

1 +

(

a2 − 4b

p

))

· p.(8)

Then from (5), (6), (7) and (8) we deduce the identity

p−1
∑

r=0

p−1
∑

s=0

χ
(

r2 + ars+ bs2 + c
)

=
1

τ(χ)

p−1
∑

t=1

χ (t) e

(

ct

p

)((

t

p

)

·G(p)− p−

(

t

p

)

·G(p)+

(

1+

(

a2−4b

p

))

· p

)

=

(

a2 − 4b

p

)

· p ·
1

τ(χ)

p−1
∑

t=1

χ (t) e

(

ct

p

)

= χ(c) ·

(

a2 − 4b

p

)

· p.

This proves Lemma 3. �

To introduce Lemma 4, we need to give the definition of the Dedekind sums.
For a positive integer q and an arbitrary integer h, the classical Dedekind sums
S(h, q) is defined by

S(h, q) =

q
∑

a=1

((

a

q

))((

ah

q

))

,
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where

((x)) =

{

x− [x]− 1
2 , if x is not an integer;

0, if x is an integer.

The various properties of S(h, k) had been studied by many authors, see [2,
3, 7, 9, 10, 11]. For example, L. Carlitz [2] proved the reciprocity theorem of
S(h, q). That is, for all positive integers h and q with (h, q) = 1, we have the
identity

S(h, q) + S(q, h) =
h2 + q2 + 1

12hq
−

1

4
.(9)

For Dedekind sums S(h, q), there is also another kind of expression as follows:

Lemma 4. Let q > 2 be an integer, then for any integer a with (a, q) = 1, we
have the identity

S(a, q) =
1

π2q

∑

d|q

d2

φ(d)

∑

χ mod d

χ(−1)=−1

χ(a)|L(1, χ)|2.

Proof. See Lemma 2 of reference [10]. �

3. Proof of Theorem

In this section, we will use the lemmas from Section 2 to prove our theorem.
First note that if all χi (i = 1, 2, . . . , 2m + 1) are odd characters mod p, then
the product χ1χ2 · · ·χ2m+1 is also an odd character mod p. So from Lemma 2
and Lemma 3 we have

p−1
∑

r=0

p−1
∑

s=0

E2m+1
(

r2 + ars+ bs2 + c, p
)

=

p−1
∑

r=0

p−1
∑

s=0









−2π−2p

p− 1

∑

χ mod p

χ(−1)=−1

χ
(

r2 + ars+ bs2 + c
)

|1− 2χ(2)|2 · |L(1, χ)|
2









2m+1

=

(

−2π−2p

p− 1

)2m+1
∑

χ1 mod p

χ1(−1)=−1

· · ·
∑

χ2m+1 mod p

χ2m+1(−1)=−1

p−1
∑

r=0

p−1
∑

s=0

χ1 · · ·χ2m+1

(

r2 + ars+ bs2 + c
)

× |1− 2χ1(2)|
2 · |L(1, χ1)|

2 · · · |1− 2χ2m+1(2)|
2 · |L(1, χ2m+1)|

2

=

(

a2 − 4b

p

)

· p ·

(

−2π−2p

p− 1

)2m+1
∑

χ1 mod p

χ1(−1)=−1

· · ·
∑

χ2m+1 mod p

χ2m+1(−1)=−1

χ1 · · ·χ2m+1(c)

× |1− 2χ1(2)|
2 · |L(1, χ1)|

2
· · · |1− 2χ2m+1(2)|

2 · |L(1, χ2m+1)|
2
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=

(

a2 − 4b

p

)

· p ·











−2π−2p

p− 1

∑

χ mod p

χ(−1)=−1

χ(c) · |1− 2χ(2)|2 · |L(1, χ)|
2











2m+1

=

(

a2 − 4b

p

)

· p · E2m+1(c, p).

This proves our theorem.
Now we prove Corollary 1, Corollary 2 and Corollary 3. From (9) and

Lemma 4 we have

(10)
∑

χ mod p

χ(−1)=−1

χ(a)|L(1, χ)|2 = π2 ·
p− 1

p
· S(a, p),

(11)
∑

χ mod p

χ(−1)=−1

|L(1, χ)|2 =
π2

12
·
(p− 1)2(p− 2)

p2
,

∑

χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 = π2 ·
p− 1

p
· S(2, p)

= π2 ·
p− 1

p
·

(

p2 + 4 + 1

24p
−

1

4
− S(p, 2)

)

=
π2

24
·
(p− 1)2(p− 5)

p2
(12)

and
∑

χ mod p

χ(−1)=−1

χ(4)|L(1, χ)|2 = π2 ·
p− 1

p
· S(4, p)

= π2 ·
p− 1

p
·

(

p2 + 16 + 1

48p
−

1

4
− S(p, 4)

)

=

{

π2

48 · (p−1)2(p−17)
p2 , if p ≡ 1 mod 4;

π2

48 · (p−1)(p2−6p+17)
p2 , if p ≡ 3 mod 4.

(13)

From (11), (12) and Lemma 2 we can deduce the identity

E(1, p) = −
1

2
· (p− 1).(14)

Combining Theorem and (14) we may immediately obtain the identity

p−1
∑

r=0

p−1
∑

s=0

E2m+1
(

r2 + ars+ bs2 + 1, p
)

= −

(

a2 − 4b

p

)

· p ·
(p− 1)2m+1

22m+1
.

This proves Corollary 1.
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From (11), (12), (13) and Lemma 2 we can also deduce the identity

E(2, p) = −
2π−2p

p− 1

∑

χ mod p

χ(−1)=−1

χ(2) · |1− 2χ(2)|2 · |L(1, χ)|2

=

{

0, if p ≡ 1 mod 4;
1, if p ≡ 3 mod 4.

(15)

Combining Theorem and (15) we may immediately obtain the identity

p−1
∑

r=0

p−1
∑

s=0

E2m+1
(

r2 + ars+ bs2 + 2, p
)

=

{ (

a2−4b
p

)

· p, if p ≡ 3 mod 4;

0, if p ≡ 1 mod 4.

This proves Corollary 2.
Note that E(−c, p) = −E(c, p), so Corollary 3 follows from Theorem and

Corollary 1 with m = 0. This completes the proof of all results.
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