• Title/Summary/Keyword: exact dynamic element

Search Result 129, Processing Time 0.02 seconds

A REVIEW ON REDUCTION IN FINITE ELEMENT ANALYSIS

  • Kim, Ki-Ook;Park, Young-Jae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • Reduction methods for large structural systems have been reviewed. Mai emphasis is put on the dynamic reduction. Recently, the computing resources and technologies have been expanded so fast that the huge matrices Invoked In the analysis of structural system can be processed without serious difficulties. For most users, however, the computer facilities are limited and the system reductions in some forms are required. The reduction procedure in static problems is simple and straightforward. The major task is the book-keeping in computations. In dynamic problems and structural optimization. however. the problem is much more complicated. The problem is, in general, nonlinear and hence the exact solution is not available. Therefore, approximate solutions are sought in an iterative manner. A proper convergence criterion needs to be employed in order to get an accurate solution efficiently. Several research works have been reported fer the structural optimization combined with system reductions.

  • PDF

Nonlinear Dynamic Analysis of Vehicle-Bridge Interaction considering the Hertzian Contact Spring and Rail Irregularities (헤르쯔 접촉스프링과 레일 요철을 고려한 차량-교량 동적상호작용 비선형 해석)

  • Kang, Young-Jong;Neuyen, Van-Ban;Kim, Jung-Hun;Kang, Yoon-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1478-1485
    • /
    • 2010
  • In this paper, the nonlinear dynamic response of Vehicle-Bridge interaction with the coupled equations of motion including nonlinear Hertzian contact is presented. The moving train model is chosen to have 10 degrees of freedom (DOF). The bridge is modeled as 2D Euler-Bernoulli beam element with 4 DOF for each element, two for rotations and another two for translations. The nonlinear Hertzian contact is used to simulate the interaction between vehicle and bridge. Base on the relationship of wheel displacement of the vehicle and the vertical displacement of the bridge in Hertzian contact, the coupled equations of motion of the whole system is derived. The convenient formulation was encoded into a computer program. The contact forces, contact area and stress of the rail surface were also computed. The accuracy and efficiency of the proposed program are verified and compared with exact analytical solution and other previous studies. Various numerical examples and parametric studies have demonstrated the versatility and applicability of the proposed program.

  • PDF

Dynamic analysis of Pine Flat dam-reservoir system utilizing Hagstrom-Warburton truncation boundary condition

  • Solmaz Dehghanmarvasty;Vahid Lotfi
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.365-389
    • /
    • 2023
  • Dynamic analysis of a typical concrete gravity dam-reservoir system is formulated by FE-(FE-TE) approach (i.e., Finite Element-(Finite Element-Truncation Element)). In this technique, dam and reservoir are discretized by plane solid and fluid finite elements. Moreover, the H-W (i.e., Hagstrom-Warburton) high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model. The formulation is initially reviewed which was originally proposed in a previous study. Thereafter, the response of Pine Flat dam-reservoir system is studied due to horizontal and vertical ground motions for two types of reservoir bottom conditions of full reflective and absorptive. It should be emphasized that study is carried out under high order of H-W condition applied on the truncation boundary. The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by FE-(FE-HE) approach (referred to as exact method). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

Modelling and dynamic analysis of electro-mechanical system in machine tools (공작기계 시스템의 모델링과 동적 특성 분석)

  • 박용환;신흥철;문희성;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.991-994
    • /
    • 1995
  • Recent trend in machine tools is pursuing the high precision and high speed facility and its architecture is being more complicated. With this tendency, it is required the more precise dynamic analysis of electro-mechanical system in machine tools. In this paper, the exact mathematical model of feed and spindle system of a typical machine tools was induced. The feed system is modeled as 7-mass system including the workpiece and the spindle system as 4-mass system. The simulation results show that the induced model depicts the characteristics of real system very well. The effects of each mechanical element to dynamic motion of a machine are analyzed by simulation with the induced model. It ia anticipated that the induced model can be used in the analysis of various machine architectures and in the design stage of new machine tools.

  • PDF

Numerical Analysis to Investigate Dynamic Characteristics of Steel Plate Girder Railway Bridges without Ballast (무도상 판형교의 동적거동특성 분석을 위한 해석적 연구)

  • 최진유;오지택;김현민;김영국
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1080-1085
    • /
    • 2002
  • A dynamic characteristics of existing steel plate girder railway bridges without ballast were investigated from the finite element analysis. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional bridge models and wheel loads were produced by averaging field measured wheel loads of running vehicles at various speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 9m, 12m and 18m span length were investigated and compared with the limit values specified in Korean railway bridge specification.

  • PDF

A Comparison of Dynamics of Rotor Systems for Different Internal Damping Models (분포 내부 감쇠 모형에 따른 회전체 계 동특성 비교 연구)

  • 박종혁;전봉석;강중옥;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.838-843
    • /
    • 2001
  • Internal damping plays an important role in some rotor dynamic systems with the use of various materials for shafts, for example, composite material. However, although the effects of internal damping have been investigated for a couple of decades, there are several different internal damping models in use, none of which are accepted as the most reliable model. The purpose of this paper is to compare the results of dynamic analysis of rotor systems with several different internal damping models. The exact dynamic element method is used to formulate and analyze the problem. The simulation results provided in this paper may be useful for the dynamic analysis of high rotor systems subject to significant internal damping.

  • PDF

Numerical methods for the dynamic analysis of masonry structures

  • Degl'Innocenti, Silvia;Padovani, Cristina;Pasquinelli, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.107-130
    • /
    • 2006
  • The paper deals with the numerical solution of the dynamic problem of masonry structures. Masonry is modelled as a non-linear elastic material with zero tensile strength and infinite compressive strength. Due to the non-linearity of the adopted constitutive equation, the equations of the motion must be integrated directly. In particular, we apply the Newmark or the Hilber-Hughes-Taylor methods implemented in code NOSA to perform the time integration of the system of ordinary differential equations obtained from discretising the structure into finite elements. Moreover, with the aim of evaluating the effectiveness of these two methods, some dynamic problems, whose explicit solutions are known, have been solved numerically. Comparisons between the exact solutions and the corresponding approximate solutions obtained via the Newmark and Hilber-Hughes-Taylor methods show that in the cases under consideration both numerical methods yield satisfactory results.

Match Field based Algorithm Selection Approach in Hybrid SDN and PCE Based Optical Networks

  • Selvaraj, P.;Nagarajan, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5723-5743
    • /
    • 2018
  • The evolving internet-based services demand high-speed data transmission in conjunction with scalability. The next generation optical network has to exploit artificial intelligence and cognitive techniques to cope with the emerging requirements. This work proposes a novel way to solve the dynamic provisioning problem in optical network. The provisioning in optical network involves the computation of routes and the reservation of wavelenghs (Routing and Wavelength assignment-RWA). This is an extensively studied multi-objective optimization problem and its complexity is known to be NP-Complete. As the exact algorithms incurs more running time, the heuristic based approaches have been widely preferred to solve this problem. Recently the software-defined networking has impacted the way the optical pipes are configured and monitored. This work proposes the dynamic selection of path computation algorithms in response to the changing service requirements and network scenarios. A software-defined controller mechanism with a novel packet matching feature was proposed to dynamically match the traffic demands with the appropriate algorithm. A software-defined controller with Path Computation Element-PCE was created in the ONOS tool. A simulation study was performed with the case study of dynamic path establishment in ONOS-Open Network Operating System based software defined controller environment. A java based NOX controller was configured with a parent path computation element. The child path computation elements were configured with different path computation algorithms under the control of the parent path computation element. The use case of dynamic bulk path creation was considered. The algorithm selection method is compared with the existing single algorithm based method and the results are analyzed.

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

Study on the Dynamic Analysis of the Continuous System by Digital Modeling (이산화 기법에 의한 연속계의 동적 응답해석에 관한 연구)

  • 이용관;김인수;홍성욱;췌처린
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.135-142
    • /
    • 1997
  • This paper presents a digital modeling technique of the distributed system. The basic idea of the proposed technique is to discretize a continuous system with respect to the spatial coordinates using bilinear method. The response of the discretized system is analyzed by Laplace transform and z-transform. The computational results in torsional shaft and Timoshenko beam using the proposed technique are compared with the exact solutions and the results of finite element method.

  • PDF