• Title/Summary/Keyword: evolution heat

Search Result 385, Processing Time 0.024 seconds

Prediction of Martensite Fraction in the Sintering Hardening Process of Ni/Mo Alloy Powder (FLC-4608) Using the Finite Element Method (Ni/Mo 합금분말(FLC-4608)의 소결경화 공정에서 유한요소법을 이용한 마르텐사이트 분율의 예측)

  • Park, Hyo Wook;Joo, Soo-Hyun;Lee, Eon Sik;Kwon, Ki Hyuk;Kim, Hyong Seop
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.

Electron Beam Weld ability of Alloy 718 Nozzle for Jet Propulsion Component (고속 추진체용 Alloy 718 노즐 단조품의 전자빔 용접성 평가)

  • Lee, C.H.;Kim, J.H.;Hong, J.K.;Yeom, J.T.;Yoon, J.W.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.523-527
    • /
    • 2008
  • In this study, mechanical properties of Alloy 718 welded after forgings for jet propulsion component was investigated. Hot-forged and machined work-pieces($230mm\times70mm\times15mm$) which have different grain sizes are welded by electron beam welding technique. After welding, the components were solution heat-treated and aged. Samples were sectioned to analyze the microstructural evolution and formation of micro-crack. It was found that HAZ grain boundary liquation crack generally initiates in the coarse grains rather than the fine grains. Needle-like phases with high Nb contents were found at the outer part near the base metal. Vickers hardness and tensile tests were carried out at room temperature and at $649^{\circ}C$. The tensile properties of electron beam welding specimens exhibited around 100MPa and 10% decrease in strength and elongation, respectively.

Nozzle Clogging Mechanism in Continuous Casting for Titanium-Containing Steel (티타늄 첨가강의 연주 노즐막힘 기구)

  • Jung, Woo-Gwang;Kwon, Oh-Duck;Cho, Mun-Kyu
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.473-480
    • /
    • 2009
  • In order to provide the mechanism of nozzle clogging, recovered nozzles for high strength steel grade were examined carefully after continuous casting. The thickness of clogged material in SEN is increased in the following order: from the bottom to the top of the nozzle, upper part of slag line, and the pouring hole. Nozzle clogging material begins to form due the adhesion of metal to nozzle wall, the decarburization, and reduction of oxide in the refractory by Al and Ti in the melt. The reduction of oxide in the refractory by Al and Ti improves the wettability of the melt on the refractory and forms a thin Al-Ti-O layer. Metal containing micro alumina inclusions is solidified on the Al-Ti-O layer, and the solid layer grows due to the heat evolution through the nozzle wall. Thermodynamic calculation has been made for the related reactions. The effect of superheat to the nozzle clogging is discussed on ultra low carbon steel and low carbon steel.

Application of Commercial FEM Code to Coupled Analysis of Casting Deformation (범용 구조해석 프로그램의 주물 열변형 해석에의 적용성)

  • Kim, Ki-Young;Kim, Jung-Tae;Choi, Jung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.192-199
    • /
    • 2002
  • Dimensional defects of castings are mainly due to the stresses and strains caused by a nonuniform temperature distribution and phase transformation during solidification and cooling, and by mechanical constraint between the mold and casting. It is, however, nearly impossible to trace movements of the casting and mold during solidification and cooling by experimental measurements for castings with complex shape. Two and three dimensional deformation analyses of the casting and the mold were performed using commercial finite element code, MARC. It was possible to calculate deformation and temperature distribution in the casting and mold simultaneously. Cooling curves of the casting obtained by calculation were close to that measured in the field since it was possible to treat latent heat evolution of the casting which could be divided into two parts, primary and eutectic parts. Mold bent inward just after pouring due to the temperature gradient across the mold thickness, and mold returned to its previous position with time. Plastic deformation occurred at the part of the casting where solidification was slow.

Application of High Strength Concrete with 40MPa Compressive Strength to the Concrete Bridge Piers (설계강도 40MPa 고강도 콘크리트를 적용한 교량 교각 구조물의 시험시공)

  • Cheong, Hai-Moon;Ahn, Tae-Song;Kwon, Young-Rak;Whang, Jae-Hui;Suh, Bong-Young;Shim, Gi-Sul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.159-160
    • /
    • 2009
  • The application of 40MPa high strength concrete was accepted as a goal for improving durability and reducing column's section in concrete bridge piers. As a result of applying 40MPa high strength concrete, it could be achieved that column diameter and coping height were reduced into 0.6m, 0.4m, respectively. And crack by heat evolution of hydration did not generate, because of a careful quality and curing control of high strength concrete.

  • PDF

The Evaluation of Adiabatic Temperature rise in Concrete by Using Blended Cement Hydration Model (혼합시멘트 수화모델을 이용한 콘크리트의 단열온도상승 예측에 관한 연구)

  • Wang, Xiaoyong;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.31-32
    • /
    • 2011
  • Granulated slag from metal industries and fly ash from the combustion of coal are industrial by-products that have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, the hydration of concrete containing fly ash or slag is much more complex compared with that of Portland cement. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures is considered in order to develop a numerical model that simulates the hydration of concrete containing fly ash or slag. The heat evolution rates of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of the mineral admixtures. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

  • PDF

THE TWO-STEP RAPID THERMAL ANNEALING EFFECT OF THE PREPATTERNED A-SI FILMS (프리 패턴한 비정질 실리콘 박막의 two-step RTA 효과)

  • Lee, Min-Cheol;Park, Kee-Chan;Choi, Kwon-Young;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1333-1336
    • /
    • 1998
  • Hydrogenated amorphous silicon(a-Si:H) films which were deposited by plasma enhanced chemical deposition(PECVD) have been recrystallized by the two-step rapid thermal annealing(RTA) employing the halogen lamp. The a-Si:H films evolve hydrogen explosively during the high temperature crystallzation step. In result, the recrystallized polycrystalline silicon(poly-Si) films have poor surface morphology. In order to avoid the hydrogen evolution, the films have undergone the dehydrogenation step prior to the crystallization step Before the RTA process, the active area of thin film transistors (TFT's) was patterned. The prepatterning of the a-Si:H active islands may reduce thermal damage to the glass substrate during the recrystallization. The computer generated simulation shows the heat propagation from the a-Si:H islands into the glass substrate. We have fabricated the poly-Si TFT's on the silicon wafers. The maximun ON/OFF current ratio of the device was over $10^5$.

  • PDF

APPLICATION OF UNCERTAINTY ANALYSIS TO MAAP4 ANALYSES FOR LEVEL 2 PRA PARAMETER IMPORTANCE DETERMINATION

  • Roberts, Kevin;Sanders, Robert
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.767-790
    • /
    • 2013
  • MAAP4 is a computer code that can simulate the response of a light water reactor power plant during severe accident sequences, including actions taken as part of accident management. The code quantitatively predicts the evolution of a severe accident starting from full power conditions given a set of system faults and initiating events through events such as core melt, reactor vessel failure, and containment failure. Furthermore, models are included in the code to represent the actions that could mitigate the accident by in-vessel cooling, external cooling of the reactor pressure vessel, or cooling the debris in containment. A key element tied to using a code like MAAP4 is an uncertainty analysis. The purpose of this paper is to present a MAAP4 based analysis to examine the sensitivity of a key parameter, in this case hydrogen production, to a set of model parameters that are related to a Level 2 PRA analysis. The Level 2 analysis examines those sequences that result in core melting and subsequent reactor pressure vessel failure and its impact on the containment. This paper identifies individual contributors and MAAP4 model parameters that statistically influence hydrogen production. Hydrogen generation was chosen because of its direct relationship to oxidation. With greater oxidation, more heat is added to the core region and relocation (core slump) should occur faster. This, in theory, would lead to shorter failure times and subsequent "hotter" debris pool on the containment floor.

The Effects of Cu TSV on the Thermal Conduction in 3D Stacked IC (3차원 적층 집적회로에서 구리 TSV가 열전달에 미치는 영향)

  • Ma, Junsung;Kim, Sarah Eunkyung;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.63-66
    • /
    • 2014
  • In this study, we investigated the effects of Cu TSV on the thermal management of 3D stacked IC. Combination of backside point-heating and IR microscopic measurement of the front-side temperature showed evolution of hot spots in thin Si wafers, implying 3D stacked IC is vulnerable to thermal interference between stacked layers. Cu TSV was found to be an effective heat path, resulting in larger high temperature area in TSV wafer than bare Si wafer, and could be used as an efficient thermal via in the thermal management of 3D stacked IC.

Photosynthetic Characteristics of Intact Cells and Thylakoid Membranes of Synechococcus PCC7002 with Polyvinyalcohol-Immobilization (Synechococcus PCC7002의 세포 및 틸라코이드 막의 Polyvinylalcohol 고정화에 의한 광합성 특성)

  • 윤지은;전현식
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.185-191
    • /
    • 1993
  • Highly stable $O_2$-evolving cells and thylakoid membranes have been obtained from the cyanobacterium, Synechococcus PCC7002, by immobilization with polyvinylalcohol(PVA). The absorption peak showed the blue-shift of about 3 nm after immobilization of intact cells and thylakoid membranes as well as isolation of thylakoid membranes. Photosynthetic electron transport activities, especially PS II activity showed greater stability in the PVA-immobilized cells and thylakoid membranes when stored at $4^{\circ}C$ than in those at $25^{\circ}C$. When the cells were threated at higher temperature, the level of Fo and Fv increased. After imobilization, however, Fo showed no change. This suggests that the immobilization can protect against the damages of PS II complex, especially a water-spiliting system, by heat treatment.

  • PDF