• Title/Summary/Keyword: evolution and phylogeny

Search Result 117, Processing Time 0.023 seconds

Three different genetic lineages of the jewel beetle Chrysochroa fulgidissima (Buprestidae; Chrysochroinae) inferred from mitochondrial COI gene

  • Kim, Sang Ki;Hwang, Ui Wook;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.37 no.1
    • /
    • pp.35-39
    • /
    • 2014
  • The phylogenetic analysis was carried out to find out the validity of Chrysochroa coreana as a new species. The insect specimens were collected at Kaohsiung, Taiwan and Shizuoka, Japan. Partial region (532 bp) of COI was amplified and sequenced. The sequences were aligned and then analyzed. Based on the Kimura-2-parameter method, we calculated genetic distances among them. It indicated that the Korean individual of C. fulgidissima was closely related to Taiwan one with relatively low genetic distance (0.083). On the other hand, the Japanese individual was remotely related with those of Korean (0.192) and Taiwan (0.183) individuals. To clarify if the populations of C. fulgidissima from Korea, Taiwan, and Japan are different at the level(s) of subspecies, species, or genus, it is necessary that more samples of the members of the family Buprestidae should be collected and genetically analyzed.

Plasmopara elegantissima sp. nov. (Oomycota, Peronosporales), a Downy Mildew Species Specialized to Impatiens textori (Balsaminaceae)

  • Choi, Young-Joon;Gorg, Marlena;Shin, Hyeon-Dong;Thines, Marco
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.304-312
    • /
    • 2020
  • Over the past 15 years, downy mildew became the most destructive foliar disease in cultivated Impatiens species (Balsaminaceae) worldwide. A previous study had revealed that the causal agent was not Plasmopara obducens (Oomycota, Peronosporales) but Plasmopara destructor on Impatiens walleriana, and Plasmopara velutina on Impatiens balsamina. This hints to a relatively high degree of specialization of Plasmopara on Balsaminaceae. Therefore, it was the aim of the present study to perform multigene phylogenetic analysis and detailed morphological investigation for several Korean downy mildew samples parasitic to cultivated I. walleriana, and I. balsamina, but also to a northeast Asian wild plant, Impatiens textori. It was revealed that I. textori harbors a new species, which is introduced and described here as Plasmopara elegantissima.

Molecular divergence of the fish somatomedins: the single family of insulin­like growth factor (IGF)-I and -II from the teleost, flounder

  • Kim Dong Soo;Kim Young Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.227-231
    • /
    • 1998
  • The teleosts represent ancient real-bony vertebrates in phylogeny and resemble major genetic patterns to higher vertebrates. In the present study, we have defined the single family of insulin-like growth factors (IGFs) from flounder (Paralichthys olivaceus), compared to the prototype of IGFs observed in the Agnathan hagfish. In flounder, IGFs are clearly diverged into two major types including type I and II, and they are structurally similar by displaying a multidomain structure consisting of five functional regions as previously found in other vertebrates. However, flIGF-I appears to be more basic (pI 8.03) than the flIGF-II (pI 5.34) in the fully processed form for the B to D domain region. The flIGF-I seems to contain an evolutionary conserved Asn-linked glycosylation in E domain, which is not found in flIGF­II. The most interesting feature is that flIGF-II appeared to be structurally close to hagfish IGF in secondary structures, particularly in Band D domains. This could tell us an idea on the molecular divergence of IGFs from the Agnatha to teleosts during the vertebrate phylogeny. It also support, in part, a notion regarding on how IGF-II is appeared as more embryonic during development. Nonetheless, the biologically active B to D domain region of flIGF-II shows significant sequence homology of $65.6\%$ to flIGF-Is and contains the evolutionary conserved insulin-family signature, as well as a reserved recognition site (Lys) in D domain, necessary to generate proteolytic cleavage for E-peptide. A significant structural difference was found in E domain in which flIGF-I possesses two potential alternative splicing donor site at $Val^{17,\;24}$ of E domain. Therefore, it seems so far that IGF-I sorely produces spliced variants due to the spliced E-peptide moiety while IGF-II appears to be maintained in a single type during evolution. IGF-II, however, may be also possible to transcribe unidentified variants, depending on the physiological conditions of tissues in vertebrates in vivo.

  • PDF

Exploring the Utility of Partial Cytochrome c Oxidase Subunit 1 for DNA Barcoding of Gobies

  • Jeon, Hyung-Bae;Choi, Seung-Ho;Suk, Ho Young
    • Animal Systematics, Evolution and Diversity
    • /
    • v.28 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Gobiids are hyperdiverse compared with other teleost groups, with about 2,000 species occurring in marine, freshwater, and blackish habitats, and they show a remarkable variety of morphologies and ecology. Testing the effectiveness of DNA barcodes on species that have emerged as a result of radiation remains a major challenge in evolutionary biology. Here, we used the cytochrome c oxidase subunit 1 (COI) sequences from 144 species of gobies and related species to evaluate the performance of distance-based DNA barcoding and to conduct a phylogenetic analysis. The average intra-genus genetic distance was considerably higher than that obtained in previous studies. Additionally, the interspecific divergence at higher taxonomic levels was not significantly different from that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI gene. However, levels of intragenus divergence varied greatly among genera, and we do not provide sufficient evidence for using COI for cryptic species delimitation. Significantly more nucleotide changes were observed at the third codon position than that at the first and the second codons, revealing that extensive variation in COI reflects synonymous changes and little protein level variation. Despite clear signatures in several genera, the COI sequences did resolve genealogical relationships in the phylogenetic analysis well. Our results support the validity of COI barcoding for gobiid species identification, but the utilization of more gene regions will assist to offer a more robust gobiid species phylogeny.

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Cancer Cells

  • Yi, Joo-Mi;Kim, Hwan-Mook;Kim, Heui-Soo
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.167-170
    • /
    • 2002
  • The long terminal repeats (LTRs) of human endogenous retrovirus (HERV) have been found to be coexpressed with sequences of closely located genes. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases and evolution. We examined the HERV-W LTR elements in various cancer cells (2F7, A43l , A549, HepG2, MIA-PaCa-2, PC-3, RT4, SiHa, U-937, and UO-31). Using genomic DNA from the cancer cells, we performed PCR amplification and identified twelve new HERV-W LTR elements. Those LTR elements showed a high degree of sequence similarity (88-99%) with HERV-W LTR (AF072500). A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-W LTR elements could be mainly divided into two groups through evolutionary divergence. Three HERV-W LTR elements (RT4-2, A43l-1, and UO3l-2) belonged to Group 1, whereas nine LTR elements (2F7-2, A549-1, A549-3, HepG2-3, MP2-2, PC3-1, SiHa-8, SiHa-10, and U937-1) belonged to Group 11. Taken together, our new sequence data of the HERV-W LTR elements may contribute to an understanding of tissue-specific cancer by genomic instability of LTR integration.

Resistance to Turnip Mosaic Virus in the Family Brassicaceae

  • Palukaitis, Peter;Kim, Su
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.1-23
    • /
    • 2021
  • Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.

Molecular Phylogeny of Syngnathiformes Fishes Inferred from Mitochondrial Cytochrome b DNA Sequences (실고기목 어류 (Syngnathiformes)의 분자계통학적 분류)

  • KOH Beom Seok;SONG Choon Bok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.405-413
    • /
    • 2004
  • The previous morphology-based taxonomic frameworks within the family Syngnathidae had emphasized the significance of the male brood pouch and reproductive biology in defining the group. However, several different hypotheses had been proposed by different investigators. This study has been carried out to determine the phylogenetic relationships among 19 species belonging to the order Syngnathiformes with three Gasterosteiformes species as outgroup taxa by using the mitochondrial cytochrome b DNA sequences. Phylogenetic analyses based on neighbor-joining distance, maximum parsimony, minimum evolution and maximum likelihood method strongly supported that the family Syngnathidae, the suborder Syngnathoidei and the order Syngnathiformes were all monophyletic group. Although much of previous morphological analyses were supported by our molecular data, there were some significant discrepancies between molecular and morphological work. Such an interesting result was that the weedy seadragon (Phyllopteryx taeniolatus) strongly grouped together with the New Zealand pot-belly seahorse (Hippocampus abdominalis). Considering the markedly different brooding structure between them, this unexpected result might be explained whether by multiple independent origins of brooding structure or by hybridization between the female Hippocampus and other syngnathid species having individual membranous egg compartment. In addition, the suborder Aulostomoidei was paraphyletic group because the shrimpfish (Aeliscus strigatus), belonging to the family Centriscidae, always grouped together with the family Syngnathidae as a sister taxon.

Revealing hidden diversity in the Sheathia arcuata morphospecies (Batrachospermales, Rhodophyta) including four new species

  • Vis, Morgan L.;Tiwari, Sunil;Evans, Joshua R.;Stancheva, Rosalina;Sheath, Robert G.;Kennedy, Bryan;Lee, Janina;Eloranta, Pertti
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.213-224
    • /
    • 2020
  • The freshwater red algal genus Sheathia contains species with heterocortication (both bulbous and cylindrical cells covering the main axis) and homocortication (only cylindrical cells). When the genus was proposed, the species with heterocortication were revised, but all specimens with homocortication were assigned to Sheathia arcuata with the caveat that it may represent a species complex. Recent studies have described new species with homocortication and S. arcuata has been rendered paraphyletic. In the current study, new sequences of the rbcL and 5′ region of the cytochrome c oxidase subunit I markers were combined with previously published data to construct a robust phylogeny and circumscribe new species. Four new species, S. abscondita, S. californica, S. plantuloides, and S. transpacifica are proposed. Examination of morphological characters among homocorticate species show no diagnostic characters to distinguish among species, whereas S. plantuloides is only known from sporophytes (chantransia) so it lacks the typical morphological characters derived from the gametophytes for comparison. Although DNA sequence data would be needed to make a positive species identification, geography could be employed to narrow the identification to one or two species. The genus is geographically widespread having been recorded from oceanic islands and five continents, whereas the individual species typically occur on a single continent. With this study, the number of species recognized in Sheathia is raised to 17; seven heterocorticate and 10 homocorticate, making this genus one of the most species rich in the Batrachospermales. As well, the resulting phylogeny provides insights into the evolution of heterocortication in Sheathia.

On the Debates of Arthropod Phylogeny (절지동물 계통에 관한 논쟁)

  • 황의욱
    • Animal Systematics, Evolution and Diversity
    • /
    • v.18 no.1
    • /
    • pp.165-179
    • /
    • 2002
  • In spite of dramatic change of environmental condition since Cambrian big-bang (explosion occurred ca.540 mya, the phylum Arthropoda retains a great diversity, and it is estimated approximately that 1-10 million arthropod species are extant on the earth. Except for an extinct arthopod subphylum Trilobita, extant arthropods could be divided into five subphyla: Hexapoda, Crustacea, Myriapoda, Chelicerata, and Pycnosonida. During the last century, systematists have disputed about interrealtionships among Arthropoda and its relatives (Onychophora, Tardigrada, and Pentastomida), arthropod phylogenetic position within protostome animals, monophyly or polyphyly of the phylum Arthropods, and interrelationships among five arthropod subgroups (subphyla) etc. Recently, new animal phylogeny was reported that protostomes could be clustered into two groups, Lophotrochozoa and Ecdysozoa, and molting animals such as Nematoda and Arthropoda were included within the Ecdysozoa. On the basis of the new animal phylogeny, first of all, I would mention phylogenetic positions and relationships of Arthropods and its relatives to introduce controversies of arthropod phylogeny in phylum level of animals. After that, I focused mainly on the controveries related to arthropod monophyly and phylogenetic relationships among four major arthropod groups except Pycnogonida. In this work, Pycnogonida which is a relatively small group and one of the five arthropod subphyla was not handled significantly although there are some controversies if it is a sister taxon of chelicerates or the most primitive arthropod group (namely, a sister of four remains arthropod groups).