On the Debates of Arthropod Phylogeny

절지동물 계통에 관한 논쟁

  • 황의욱 (경북대학교 사범대학 생물교육과)
  • Published : 2002.04.01

Abstract

In spite of dramatic change of environmental condition since Cambrian big-bang (explosion occurred ca.540 mya, the phylum Arthropoda retains a great diversity, and it is estimated approximately that 1-10 million arthropod species are extant on the earth. Except for an extinct arthopod subphylum Trilobita, extant arthropods could be divided into five subphyla: Hexapoda, Crustacea, Myriapoda, Chelicerata, and Pycnosonida. During the last century, systematists have disputed about interrealtionships among Arthropoda and its relatives (Onychophora, Tardigrada, and Pentastomida), arthropod phylogenetic position within protostome animals, monophyly or polyphyly of the phylum Arthropods, and interrelationships among five arthropod subgroups (subphyla) etc. Recently, new animal phylogeny was reported that protostomes could be clustered into two groups, Lophotrochozoa and Ecdysozoa, and molting animals such as Nematoda and Arthropoda were included within the Ecdysozoa. On the basis of the new animal phylogeny, first of all, I would mention phylogenetic positions and relationships of Arthropods and its relatives to introduce controversies of arthropod phylogeny in phylum level of animals. After that, I focused mainly on the controveries related to arthropod monophyly and phylogenetic relationships among four major arthropod groups except Pycnogonida. In this work, Pycnogonida which is a relatively small group and one of the five arthropod subphyla was not handled significantly although there are some controversies if it is a sister taxon of chelicerates or the most primitive arthropod group (namely, a sister of four remains arthropod groups).

백만종을 넘어 천만종에 이를 것으로 추산되는 절지동물 (Phylum Arthropoda)은 지구상에 현존하는 가장 번성한 동물군 중의 하나로서 캠브리아기 생물의 빅뱅 이후 급변하는 환경속에서도 멸종의 길을 걷지 않고 성공적으로 살아남아 오늘날의 다양성을 유지하고 있다. 멸종한 절지동물인 삼엽충(Trilobita)을 제외하면, 현재 서식하고 있는 절지동물들은 다섯 아문으로 나누어진다: 육각류(Hexapoda), 갑각류(Crustacea), 다지류(Myriapoda) 협각류 (Chelicerata), 바다거미류(Pycnogonida), 계통분류학자들은 절지동물과 인접분류군들 (arthropod relatives) -유조동물(Onychophora), 완보동물(Tardigrada), 오구동물(Pentastomida)-의 상호 유연관계와 선구통물 내에서의 계통학적 위치들, 절지동물의 단계통성 혹은 다계통성, 절지동물의 주요 다섯 아문들 간의 계통유연관계 등에 관한 논쟁들을 지난 세기 내내 이어왔다. 최근에 선구등불을 크게 탈피동물 (Ecdysozoa)과 촉수담륜동물 (Lophotrochozoa)로 나누고 탈피동물 내에서 절지동물의 인접분류군 중의 하나가 선형동물 (Nematoda)일 수 있다는 새로운 동물 계통이 발표된 바 있다. 본 종설에서는 이 체계를 기본으로하여 선구동물 내에서의 절지동물과 그 인접분류군들의 계통학적 위치 및 상호유연관계를 우선적으로 언급하므로서 문(Phylum) 준위에서의 절지동물 계통에 관한 논쟁들을 소개하고자 한다. 그 연후에 적지동물의 단계통성에 관한 논쟁, 절지동물 주요 네 그룹 (아문)간의 계통유연관계에 관한 논쟁들에 초점을 맞추어 논하고자 한다. 절지동물의 주요 다섯 아문 중 하나인 바다거미류 (상대적으로 작은 분류군임)의 경우, 다른 주요 네 그룹 (Euarthropoda)의 자매 군으로서 가장 원시적인 형태의 절지류인지, 아니면 협각류의 자매군인지가 논란이 되고는 있을지라도 본 종설에서는 비중있게 다루지 않았다.

Keywords

References

  1. Mol. Biol. Evol. v.6 Molecular evidence for inclusion of the phylum pentastomida in the Crustacea Abele,L.G.;W.Kim;B.E.Felgenhauer
  2. Proc. Natl. Acad. Sci. USA. v.97 The new animal phylogeny: reliability and implications Adoutte,A.;G.Blavoine;N.Lartillot;O.Lesponet;B.Prud'homme;R,de Rosa https://doi.org/10.1073/pnas.97.9.4453
  3. Nature v.38 Evidence for a clade of nematodes, arthropods and other moulting animals Aguinaldo,A.M;J.M.Turbeville;L.S.Linford;M.C. Rivera, J.R.Garey;R.A.Raff;J.A.Lake https://doi.org/10.1038/038489a0
  4. Proc. Natl. Acad. Sci. USA. v.97 Arthropods:developmental diversity within a a(super) phylum Akam,M https://doi.org/10.1073/pnas.97.9.4438
  5. Morphology of fossil arthropods as a guide to phylogenetic relationships Morphology of fossil arthropods as a guide to phylogenetic relationships Bergstrom,J.;A.P.Gupta(ed)
  6. Science v.258 Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods Ballard,J.W.O.;G.J.Olsen;D.P.Faith;W.A.Odgers;D.M.Rowell;P.W.Atkinson https://doi.org/10.1126/science.1455227
  7. Nature v.413 Sum of the arthropod parts Blaxter M. https://doi.org/10.1038/35093191
  8. Nature v.392 Gene translocation links insects and crustaceans Boore J. L;D.V. Lavrov;W.M.Brown https://doi.org/10.1038/33577
  9. Arthropoda phylogeny with special reference to insects Arthropoda phylogeny with special reference to insects Boudreaux,H.B.
  10. Science v.256 Morphological dispartiy in the Cambrian Briggs,D.E.G.;R.A.Fortey;M.A.Wills
  11. Sinauer Associates Invertebrates Brusca,R.C;G.J.Brusca
  12. Nature v.364 A cambrian gilled lobopod from Greenland Budd,G. https://doi.org/10.1038/364709a0
  13. Science v.186 Trilobites and the origin of arthropods Cisne,J.L. https://doi.org/10.1126/science.186.4158.13
  14. Curr. Biol. v.11 Hox genes and the phylogeny of the arthropods Cook,C.E.;M.L.Smith;M.J.Telford;A.Bastianello;M.Akam https://doi.org/10.1016/S0960-9822(01)00222-6
  15. The Place of tardigrades in arthropod enolution The Place of tardigrades in arthropod enolution Dewel R.A.;W.C.Dewel;R.A.Fortey(ed.);R.H.Thomas(ed.)
  16. Nature v.399 Hox genes in brachiopods and priapulids and protostome evolution De Rosa,R.;J.K.Grenier;T.Andreeva;C.E.Cook;A.Adotte;M.Akam;S.B.Carrol;G.Balavoine https://doi.org/10.1038/21631
  17. Ann. Soc. Entomol. v.37 Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name 'Tetraconata' for the monophyletic unit Crustacea+Hexapoda Dohle,W.
  18. Science. Evol. v.293 The Cambrian explosion exploded? Fortey,R.
  19. Nature v.376 Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods Friedrich,M;D.Tautz https://doi.org/10.1038/376165a0
  20. Inv. Biol. v.115 Molecular analysis supports a taedigrade-arthropoda association Garey,J.R.;M.Krotec;D.R.Nelson;J.Brooks https://doi.org/10.2307/3226943
  21. J. Mol. Evol. v.49 Mitochondrial genes collectively suggest the paraphyly of Crustacea with respect to Insecta Garcia-Machado,E.;M.Pempera;N.Dennebouy;M.Oliva-Suarez;J.C.Mounolou;M.Monnerot https://doi.org/10.1007/PL00006527
  22. Mol. Biol. Evol. v.13 First molecular evidence for the existence of a Tardigrada+Arthropoda clade Giribet,G.;S.Cararnza;J.Baguna;M.Riutort;C.Ribera https://doi.org/10.1093/oxfordjournals.molbev.a025573
  23. Nature v.413 Arthropod phylogeny based on eight molecular loci and morphology Giribet, G.;G. D. Edgecombe;W.C. Wheeler https://doi.org/10.1038/35093097
  24. Mol. Phylogenet. Evol. v.9 The position of arthropods in the animal kingdom: A search of a reliable outgroup for internal arthropod phylogeny Giribet,G;C.Ribera https://doi.org/10.1006/mpev.1998.0494
  25. Nature, Suppl. v.402 The future of evolutionary developmenta biology Holland,P.W.H. https://doi.org/10.1038/35011536
  26. Rossils and Strata v.4 A trilobitomorph origin for the crustacea Hessler,R.R.;W.A.Newman
  27. Development v.129 Exploring the myriapod body plan: expression patterns of the ten Hox genes in a contipede Hughes,C.L;T.C.Kaufman
  28. Nature v.413 Mitochondrial protein phylogeny joins myriapods with chelicerates Hwang U. W.;M. Freidrich;D. Tautz;C. J. Park;W. Kim https://doi.org/10.1038/35093090
  29. Evol. Dev. v.2 Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process Jenner,R.A https://doi.org/10.1046/j.1525-142x.2000.00060.x
  30. Kor. J. Syst. Zool. v.17 Newanimal phylogeny Kim C.B.;W.Kim
  31. J. Mol. Evol. v.43 Phylogenetic relationships of annelids, molluscs, and arthropods evidenced from molecules and morpholgy Kim C.B;S.Y.Moon;S.R.Gelder;W.Kim https://doi.org/10.1007/BF02338828
  32. Can. J. Zool. v.70 The Uniramia do not exist: the ground plan of the Pterygota as revealed by permian Diaphanopterodea from Russia (insectaL Paleodictyopteroidea) Kukalova-Peck,J. https://doi.org/10.1139/z92-037
  33. Mol. Biol. Evol. v.18 Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda Kusche, K.;T. Burmester https://doi.org/10.1093/oxfordjournals.molbev.a003943
  34. J. Zool.(Lond.) v.171 Arthropod phylogeny - a modern synthesis Manton,S.M. https://doi.org/10.1111/j.1469-7998.1973.tb07519.x
  35. The Arthropoda: habits, functional morphology and evolution The Arthropoda: habits, functional morphology and evolution Manton,S.M.
  36. Frunctonal morphology and the evolution of the hexapod classes Frunctonal morphology and the evolution of the hexapod classes Manton,S.M.;A.P.Gupta(ed.)
  37. Mol. Cells. v.8 Molecular phylogeny of arthropods and their relatives: polyphyletic origin of arthropodization Min,G.S.;S.H.Kim;W.Kim
  38. Zool. J. Linn. Soc. v.116 Phylogenetic position of the Tardigrada based on the 18S ribosomal RNA sequences Moon,S.Y.;W.Kim https://doi.org/10.1111/j.1096-3642.1996.tb02333.x
  39. Evol. Dev. v.3 Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Peterson,K.J;D.J.Eernisse https://doi.org/10.1046/j.1525-142x.2001.003003170.x
  40. Mol. Biol. Evol. v.14 Molecular phylogeny of the major arthropod groups indicates polyphyly of crustaceans and a new hypothesis for the origin of hexapods Regier,J.;C.Jeffrey;J.W.Shultz https://doi.org/10.1093/oxfordjournals.molbev.a025833
  41. Mol. Phylogenet. Evol. v.20 Elongation factor-2: a useful gene for arthropod phylogenetics Regier,J.C.;J.W.Shultz https://doi.org/10.1006/mpev.2001.0956
  42. Science v.359 End of the Uniramia taxon Shear, W. A.
  43. Proc. R. Soc. Lond. B. Biol. Sci. v.267 Rhylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean+hexapod clade Shultz,J.W.;J.C.Regier https://doi.org/10.1098/rspb.2000.1104
  44. Smithson. Misc. Collect. v.97 Evolution of the Annelida, Onychophora, and Arthropoda Snodgrass,R.E.
  45. Brain Behav. Evol. v.52 The evolution of the Arthropoda Tiegs,O.W.;S.M.Manton https://doi.org/10.1159/000006563
  46. Biol. Rev. v.33 The evolution of the Arthropoda Tiegs,O.W.;S.M.Manton https://doi.org/10.1111/j.1469-185X.1958.tb01258.x
  47. Mol. Biol. Evol. v.8 The phylogenetic status of arthropods, as in ferred from 18S rRNA sequences Turbeville,J.M.;D.M.Pfeifer;K.G.Field;R.A.Raff
  48. Proc. Natl. Acad. Sci. USA. v.86 Bilaterians of the Precambrian-Cambrian transition and the annelid-arthropod relationship Valentine,J.W. https://doi.org/10.1073/pnas.86.7.2272
  49. Zool. Jb. Syst. v.120 Rejection of the 'Uniramia' hypothesis and implication of the Mandibulata concept Wagele,J.W.
  50. Significance of later embryonic stages and head development in arthropod phylogeny Significance of later embryonic stages and head development in arthropod phylogeny Weygoldt,P.;A.P.Gupta(ed.)
  51. Zeitschrift fur Zoologische, Systematik and Evolutionsforschung v.24 Arthropod interrelationships - the phylogenetic-systematic approach Weygoldt,P.
  52. Cladistics v.9 Arthropod phylogeny: a combined approach Wheeler,W.C.;P.Cartwrigth;C.Y.Hayashi https://doi.org/10.1111/j.1096-0031.1993.tb00207.x
  53. data. Syst. Biol. v.44 Sequence alignment, parameter sensitivity, and the phlogenetic analysis of molecular Wheeler,W.C.
  54. Molecular systematics and arthropds Molecular systematics and arthropds Wheeler,W.C.;G.D.Edgecombe(ed.)
  55. Sampling, groundplans, total evidence and the systematics of arthropods Sampling, groundplans, total evidence and the systematics of arthropods Weeler,W.C.;R.A.Fortey(ed);R.H.Thomas(ed)
  56. The Burgess shale The Burgess shale Whittington, H. B.
  57. Invertebrate relationships: patterns in animal evolution Invertebrate relationships: patterns in animal evolution Willmer,P.
  58. Evolutionary crrelates of arthropod tagmosis:Scrambled legs Evolutionary crrelates of arthropod tagmosis:Scrambled legs Wills,M.A.;D.E.G.Brigge;R.A.Fortey(ed.);R.H.Thomas(ed.)
  59. Verh. Distch. Zool. Gesamte. v.88 The significance of fossils in understanding arthropod evolution Wills,M.A.;D.E.G.Briggs;R.A.Fortey;M.Wilkinson
  60. Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets Zrzavy,J.;V.Hypsa;M.Vlaskova;R.A.Fortey(ed.);R.H.Thomas(ed.)