Browse > Article
http://dx.doi.org/10.5635/ASED.2012.28.4.269

Exploring the Utility of Partial Cytochrome c Oxidase Subunit 1 for DNA Barcoding of Gobies  

Jeon, Hyung-Bae (Department of Life Sciences, Yeungnam University)
Choi, Seung-Ho (Institute of Biodiversity Research)
Suk, Ho Young (Department of Life Sciences, Yeungnam University)
Abstract
Gobiids are hyperdiverse compared with other teleost groups, with about 2,000 species occurring in marine, freshwater, and blackish habitats, and they show a remarkable variety of morphologies and ecology. Testing the effectiveness of DNA barcodes on species that have emerged as a result of radiation remains a major challenge in evolutionary biology. Here, we used the cytochrome c oxidase subunit 1 (COI) sequences from 144 species of gobies and related species to evaluate the performance of distance-based DNA barcoding and to conduct a phylogenetic analysis. The average intra-genus genetic distance was considerably higher than that obtained in previous studies. Additionally, the interspecific divergence at higher taxonomic levels was not significantly different from that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI gene. However, levels of intragenus divergence varied greatly among genera, and we do not provide sufficient evidence for using COI for cryptic species delimitation. Significantly more nucleotide changes were observed at the third codon position than that at the first and the second codons, revealing that extensive variation in COI reflects synonymous changes and little protein level variation. Despite clear signatures in several genera, the COI sequences did resolve genealogical relationships in the phylogenetic analysis well. Our results support the validity of COI barcoding for gobiid species identification, but the utilization of more gene regions will assist to offer a more robust gobiid species phylogeny.
Keywords
cytochrome c oxidase subunit 1; barcoding; phylogeny; Gobiidae; Gobioidei;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akihito A, Iwata T, Kobayashi T, Ikeo K, Imanishi T, Ono H, Umehara Y, Hamamatsu C, Sugiyama K, Ikeda Y, Sakamoto K, Fumihito A, Ohno S, Gojobori T, 2000. Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome b genes. Gene, 259:5-15.   DOI   ScienceOn
2 April J, Mayden RL, Hanner RH, Bernatchez L, 2011. Genetic calibration of species diversity among North America's freshwater fishes. Proceedings of the National Academy of Sciences United States of America, 108:10602-10607.   DOI   ScienceOn
3 Aquilino SVL, Tango JM, Fontanilla IKC, Pagulayan RC, Basiao ZU, Ong PS, Quilang JP, 2011. DNA barcoding of the ichthyofauna of Taal Lake, Philippines. Molecular Ecology Resources, 11:612-619.   DOI   ScienceOn
4 Aquino LMG, Tango JM, Canoy RJC, Fontanilla IKC, Basiao ZU, Ong PS, Quilang JP, 2011. DNA barcoding of fishes of Laguna de Bay, Philippines. Mitochondrial DNA, 22:143- 153.   DOI   ScienceOn
5 Avise JC, Ellis D, 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 312:325-342.   DOI   ScienceOn
6 Brown WM, George M Jr, Wilson AC, 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States America, 76:1967- 1971.   DOI   ScienceOn
7 Che J, Chen HM, Yang JX, Jin JQ, Jiang K, Yuan ZY, Murphy RW, Zhang YP, 2012. Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12: 247-258.   DOI   ScienceOn
8 Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN, 2007. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 7: 184-190.   DOI   ScienceOn
9 Ebach MC, Holdrege C, 2005. More taxonomy, not DNA barcoding. BioScience, 55:822-823.   DOI   ScienceOn
10 Feng Y, Li Q, Kong L, Zheng X, 2011. COI-based DNA barcoding of Arcoida species (Bivalvia: Pteriomorphia) along the coast of China. Molecular Ecology Resources, 11:435-441.   DOI   ScienceOn
11 Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series, 41:95-98.
12 Harada S, Jeon SR, Kinoshita I, Tanaka M, Nishda M, 2002. Phylogenetic relationships of four species of floating gobies (Gymnogobius) as inferred from partial mitochondrial cytochrome b gene sequences. Ichthyological Research, 49:324- 332.   DOI
13 Hebert PDN, Cywinska A, Ball SL, DeWaard JR, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270:313-321.   DOI   ScienceOn
14 Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM, 2004. Identification of birds through DNA barcodes. PLoS Biology, 2:e312.   DOI   ScienceOn
15 Herler J, Munday PL, Hernaman V, 2011. Gobies on coral reefs. In: The biology of gobies (Eds., Patzner RA, van Tassell JL, Kovacic M, Kapoor BG). Science Publishers, New York, pp. 493-530.
16 Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L, 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE, 3:e2490.   DOI
17 Hubert N, Meyer CP, Bruggemann HJ, Guerin F, Komeno RJL, Espiau B, Causse R, Williams JT, Planes S, 2012. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNAbarcoding provides new support to the centre-of-overlap hypothesis. PLoS ONE, 7:e28987.   DOI
18 Huelsenbeck JP, 1997. Is the Felsenstein zone a fly trap? Systematic Biology, 46:69-74.   DOI   ScienceOn
19 Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN, 2007. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7:544-548.   DOI   ScienceOn
20 Johns GC, Avise JC, 1998. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution, 15:1481- 1490.   DOI   ScienceOn
21 Kawanabe H, Mizuno N, 1989. Freshwater fishes of Japan. Yamatokeikokusha, Tokyo, pp. 1-719.
22 Keith P, Lord C, Lorion J, Watanabe S, Tsukamoto K, Couloux A, Dettai A, 2011. Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae) inferred from mitochondrial and nuclear genes. Marine Biology, 158:311-326.   DOI
23 Kim JB, 1995. The studies of speciation and systematics on the fishes of the genera Rhinogobius and Tridentiger (Perciformes, Gobiidae) in Korea. PhD dissertation, Inha University, Incheon, Korea, pp. 1-158.
24 Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111-120.   DOI
25 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG, 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23:2947-2948.   DOI   ScienceOn
26 Larson HK, 2001. A revision of the gobiid fish genus Mugilogobius (Teleostei: Gobioidei), and its systematic placement. Records of the Western Australian Museum, Supplement 62:1-233.   DOI
27 Leray M, Boehm JT, Mills SC, Meyer CP, 2012. Moorea BIOCODE barcode library as a tool for understanding predatorprey interactions: insights into the diet of common predatory coral reef fishes. Coral Reefs, 31:383-388.   DOI
28 Moore WS, 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49:718-726.   DOI   ScienceOn
29 Nei M, Gojobori T, 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3:418-426.
30 Murdy EO, 1989. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Records of the Australian Museum, Supplement, 11:1-93.   DOI
31 Nei M, Kumar S, 2000. Molecular evolution and phylogenetics. Oxford University Press, Oxford, pp. 1-352.
32 Nelson JS, 2006. Fishes of the world. 4th ed. John Wiley and Sons, Hoboken, NJ, pp. 1-601.
33 Parenti LR, Thomas KR, 1998. Pharyngeal jaw morphology and homology in sicydiine gobies (Teleostei: Gobiidae) and allies. Journal of Morphology, 237:257-274.   DOI
34 Pezold F, 1993. Evidence for a monophyletic Gobiinae. Copeia, 1993:634-643.   DOI   ScienceOn
35 Posada D, Crandall KA, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14:817-818.   DOI   ScienceOn
36 Ronquist F, Huelsenbeck JP, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572-1574.   DOI   ScienceOn
37 Roques S, Fox CJ, Villasana MI, Rico C, 2006. The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: a detailed genomic comparison among closely related species of the Gadidae family. Gene, 383:12-23.   DOI   ScienceOn
38 Steinke D, Zemlak TS, Hebert PDN, 2009. Barcoding nemo: DNA-based identifications for the ornamental fish trade. PLoS ONE, 4:e6300.   DOI   ScienceOn
39 Thacker CE, 2003. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 26:354-368.   DOI   ScienceOn
40 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28:2731-2739.   DOI   ScienceOn
41 Thacker CE, 2009. Phylogeny of Gobioidei and placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia, 2009: 93-104.   DOI   ScienceOn
42 Thacker CE, Hardman MA, 2005. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 37:858-871.   DOI   ScienceOn
43 Thacker CE, Schaefer SA, 2000. Phylogeny of the wormfishes (Teleostei: Gobioidei: Microdesmidae). Copeia, 2000:940- 957.   DOI   ScienceOn
44 Thacker CE, Thompson AR, Roje DM, 2011. Phylogeny and evolution of Indo-Pacific shrimp-associated gobies (Gobiiformes: Gobiidae). Molecular Phylogenetics and Evolution, 59:168-176.   DOI   ScienceOn
45 Tornabene L, Baldwin C, Weigt LA, Pezold F, 2010. Exploring the diversity of western Atlantic Bathygobius (Teleostei: Gobiidae) with cytochrome c oxidase-I, with descriptions of two new species. Aqua Journal of Ichthyology and Aquatic Biology, 16:141-170.
46 Triantafyllidis A, Bobori D, Koliamitra C, Gbandi E, Mpanti M, Petriki O, Karaiskou N, 2011. DNA barcoding analysis of fish species diversity in four north Greek lakes. Mitochodrial DNA, 22:37-42.   DOI   ScienceOn
47 Weigt LA, Baldwin CC, Driskell A, Smith DG, Ormos A, Reyier EA, 2012. Using DNA barcoding to assess Caribbean reef fish biodiversity: expanding taxonomic and geographic coverage. PLoS ONE, 7:e41059.   DOI
48 Wang HY, Tsai MP, Dean J, Lee SC, 2001. Molecular phylogeny of gobioid fishes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences. Molecular Phylogenetics and Evolution, 20:390-408.   DOI   ScienceOn
49 Ward RD, Holmes BH, 2007. An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (cox1) in fishes. Molecular Ecology Notes, 7:899- 907.   DOI   ScienceOn
50 Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN, 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 360:1847-1857.   DOI   ScienceOn
51 Will KW, Mishler BD, Wheeler QD, 2005. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54:844-851.   DOI   ScienceOn
52 Yamada T, Sugiyama T, Tamaki N, Kawakita A, Kato M, 2009. Adaptive radiation of gobies in the interstitial habitats of gravel beaches accompanied by body elongation and excessive vertebral segmentation. BMC Evolutionary Biology, 9:145.   DOI   ScienceOn
53 Zander CD, 2011. Morphological adaptation to special environments of gobies. In: The biology of gobies (Eds., Patzner RA, van Tassell JL, Kovacic M, Kapoor BG). Science Publishers, New York, pp. 345-366.