• Title/Summary/Keyword: every prime ideal is maximal

Search Result 20, Processing Time 0.025 seconds

ON WEAK II-REGULARITY AND THE SIMPLICITY OF PRIME FACTOR RINGS

  • Kim, Jin-Yong;Jin, Hai-Lan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.151-156
    • /
    • 2007
  • A connection between weak ${\pi}-regularity$ and the condition every prime ideal is maximal will be investigated. We prove that a certain 2-primal ring R is weakly ${\pi}-regular$ if and only if every prime ideal is maximal. This result extends several known results nontrivially. Moreover a characterization of minimal prime ideals is also considered.

Pseudo valuation domains

  • Cho, Yong-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.281-284
    • /
    • 1996
  • In this paper we characterize strongly prime ideals and prove a theorem: an integral domain R is a PVD if and only if every maximal ideal M of R is strongly prime.

  • PDF

ON A GENERALIZATION OF RIGHT DUO RINGS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.925-942
    • /
    • 2016
  • We study the structure of rings whose principal right ideals contain a sort of two-sided ideals, introducing right ${\pi}$-duo as a generalization of (weakly) right duo rings. Abelian ${\pi}$-regular rings are ${\pi}$-duo, which is compared with the fact that Abelian regular rings are duo. For a right ${\pi}$-duo ring R, it is shown that every prime ideal of R is maximal if and only if R is a (strongly) ${\pi}$-regular ring with $J(R)=N_*(R)$. This result may be helpful to develop several well-known results related to pm rings (i.e., rings whose prime ideals are maximal). We also extend the right ${\pi}$-duo property to several kinds of ring which have roles in ring theory.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.

P-STRONGLY REGULAR NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.483-488
    • /
    • 2012
  • In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) $Na$ + P is an ideal of N for any $a{\in}N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills I + P = $I^2$ + P.

QUOTIENT RINGS INDUCED VIA FUZZY IDEALS

  • Liu, Yong-Lin;Meng, Jie;Xin, Xiao-Long
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.855-867
    • /
    • 2001
  • This note we give a construction of a quotient ring $R/{\mu}$ induced via a fuzzy ideal ${\mu}$ in a ring R. The Fuzzy First, Second and Third Isomorphism Theorems are established. For some applications of this construction of quotient rings, we show that if ${\mu}$ is a fuzzy ideal of a commutative ring R, then $\mu$ is prime (resp. $R/{\mu}$ is a field, every zero divisor in $R/{\mu}$ is nilpotent). Moreover we give a simpler characterization of fuzzy maximal ideal of a ring.

A NOTE ON REAL QUATERNION

  • Hwang, Chul Ju
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.245-248
    • /
    • 2009
  • We consider pm-ring with the property such that every prime ideal is contained in only one maximal ideal. Orsatti[4] characterized pm-rings by means of the retraction. Contessa[1] found algebraic condition, by using that direct product of pm-rings is a pm-ring. We show that C(X, H) and C(X, C) are pm-rings and we extend a quasi pm-domain.

  • PDF