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ON THE MAXIMALITY OF PRIME
IDEALS IN EXCHANGE RINGS

CHAN YONG Hong, NaMm KyunN KiM, AND TAl KEUN KWAK

ABSTRACT. We investigate the relationship between various gen-
eralizations of von Neumann regularity condition and the condition
that every prime ideal is maximal in exchange rings.

0. Introduction

Throughout this paper R denotes an associative ring with identity
and J(R) always stands for the Jacobson radical of a ring R.

According to Crawley and Jénsson [6], a right R-module M is called
to have the exchange property if for every right R-module A and any
two decompositions of 4

A=M@@N = DicrA;
where M’ 22 M, there exist submodules A, C A; such that
A=M & (BicrA)

Warfield [18] called a ring R exchange if Rg has the exchange property
and proved that this definition is right-left symmetric. The first element-
wise characterization of exchange rings was given by Monk [14]: R is an
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exchange ring if and only if for every a € R, there exist b,c € R such
that bab = b and ¢(1 — a)(1 — ba) = 1 — ba. Nicholson [15] gave another
characterization of exchange rings: R is an exchange ring if and only if
R/J(R) is an exchange ring and idempotents can be lifted modulo J(R)
if and only if for any a € R, there exists an idempotent e € aR such
that 1 —e € (1 —a)R.

Note that every homomorphic image of exchange rings is exchange.
But a subring of exchange rings needs not to be an exchange ring. For
example, Q the set of all rational numbers is an exchange ring but the
subring Z the set of all integers is not exchange. For, if e2 = e € 3Z,
thene =0. But 1 -0 =1 ¢ (1 — 3)Z = 2Z. Moreover, the following
example shows that there exists an exchange ring R which is finitely
generated as a right S-module, where S is a subring of R and S is not
exchange.

EXAMPLE 0.1. Let R = Mat3(Q) be the ring of all 3 x 3 matrices
over the set of all rational numbers Q. Then R is semisimple Artinian
and so R is exchange. Let

Q Q Q
S=(0 Z Q
0 0 Q
Then § is a subring of R and R is finitely generated as a right S-module.
0 00
In fact, we have R = Z?eriS, where 11 = 1g, 79 = (1 0 01,
[0 0 0]
0 00 0 00 [0 0 0]
r3=10 0 O|,andr4,=[0 0 O|. Nowwetakea= [0 3 0}.
1 00 010 0 00

Then 0 is the only idempotent contained in a.S. However 15 ¢ (15 —a)S.
Therefore S is not exchange.

In general, all idempotents of a ring R need not to be lifted modulo
J(R). For example, let R = {¢ € Q|bis relatively prime to 6}. Then the
idempotents 3 and 4 are cannot be lifted modulo J(R) = 6 R. However,
if I is a nil ideal of a ring R, then idempotents can be lifted modulo I,
but there exists a non-exchange ring R with J(R) nil, for example the
ring Z of all integers.

The class of exchange rings is quite large. It includes all local rings,
all von Neumann regular rings and all semiperfect rings. Moreover, it
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properly contains the class of w-regular rings which is one of the gener-
alizations of von Neumann regular rings.

On the other hand, the relationship between various generalizations
of von Neumann regularity and the condition that every prime ideal
is maximal have been investigated by many authors [3, 4, 7, 8, 11,
17 and 20, etc.]. The first clearly established equivalence between a
generalization of von Neumann regularity and the maximality of prime
ideals seems to have been made by Storrer [17] in the following result: If
R is a commutative ring with identity then R is w-regular if and only if
every prime ideal of R is maximal. Storrer’s result was extended to PI-
rings, right duo rings and bounded weakly right duo rings [7, 8 and 19),
respectively. Moreover, Hirano [8] proved that if R is a 2-primal ring,
then R is m-regular if and only if every prime ideal of R is a maximal
one-sided ideal. Birkenmeier, Kim and Park [3] showed that if R is a 2-
primal ring, then every prime ideal of R is maximal if and only if R/P(R)
is right weakly m-regular, where P(R) is the prime radical of R. These
results were mainly explained the relation between the w-regularity and
the maximality of prime ideals of rings.

In this paper, we investigate the connection between various general-
izations of von Neumann regularity and the condition that every prime
ideal is maximal in exchange rings.

1. Preliminaries and Examples

Recall that a ring R is called to be (strongly) m-regular if for every
z € R there exists a positive integer n, depending on z, such that (z" €
z"T1R) ™ € z"Ra™. Strong w-regularity is right-left symmetric. R is
called to be right (left) weakly m-regular if for every x € R there exists
a positive integer n, depending on z, such that ™ € z"R2"R (2" €
Rz™Rz™). R is weakly m-regular if it is both right and left weakly =-
regular. Note that w-regular rings are weakly w-regular rings but the
converse is not true.

In general, w-regular rings are exchange rings [16, Example 2.3]. How-
ever, the following example shows that the converse does not hold (also
see [15, Example 1.7]).

EXAMPLE 1.1. [21, Example 3.5] Let p be a prime and let R = Z),
the localization of integers at (p). Then R is a commutative exchange
ring. But R is not (right weakly) m-regular. For, if R is a (right weakly)
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n-regular ring, then J(R) is nil. However J(Z;)) is not nil. Therefore
R is not (right weakly) m-regular.

Recall that a ring R is called to be right (resp. left) quasi-duo if every
maximal right (resp. left) ideal of R is an ideal. R is called to be abelian
if every idempotent of R is central.

The class of right quasi-duo rings and the class of exchange rings do
not depend on each other. For example, the ring Z of all integers is a
(right) quasi-duo ring, but it is not exchange. Conversely, we consider
the ring of all 2 x 2 matrices, Maty(F'), over a field F. Then it is an
exchange ring, but it is not right quasi-duo. However, every abelian
exchange ring is a right quasi-duo ring by [5, Theorem 3.1(ii)(b)].

Observe that the ring R, in Example 1.1, is abelian exchange but it
is not right weakly m-regular. The following example shows that there
exists an abelian right weakly w-regular ring which is not exchange.
Thus even if the class of exchange rings properly contains the class of
m-regular rings, it does not contain the class of (abelian) right weakly
m-regular rings.

ExXAMPLE 1.2. Let D be a simple domain which is not a division

ring. Consider a ring
a b
n={]2 ] tasen).

Then it can be easily checked that R is abelian. Also, R is right weakly
m-regular. For, if z € P(R), where P(R) is the prime radical of R,
then 22 = 0 and hence 22 € z2R2?R. Suppose x ¢ P(R). Then since
R/P(R) = D is simple, RzR + P(R) = R. Thus a + 8 = 1 for some
a € RrR and 8 € P(R). But 2 =0and so 1 = (a+ )% € RzR. Hence
z € RrR and so R is right weakly n-regular.

Note that a ring is right quasi-duo if and only if every factor ring modulo
a right primitive ideal is a division ring. Now,

R/[g ]3] ~D

is a simple domain, but it is not a division ring. So K is not a right
quasi-duo ring. Moreover, R is not exchange because R is abelian.

The following example shows that there exists an abelian exchange
ring R (and so R/J(R) is exchange) with J(R) nil. However R/J(R) is
not right weakly m-regular.
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ExAMPLE 1.3. Let QQ denote the rational numbers and L the ring of
all rational numbers with odd denominators. Define

R={(z1,z2,... 2, ,0,...)|1<n,z; €Q for1<i<n,leL}

with componentwise operations. Then R is a commutative exchange
ring with zero Jacobson radical. However R/J(R) is not right weakly
m-regular. For, let @ = (2,...,%,...), then o™ ¢ o"Ra™R for any

positive integer n.

Stock [16] called a ring R right (resp. left) P-exchange if every pro-
jective right (resp. left) R-module has the exchange property. Observe
that P-exchange rings are exchange rings. Recently, Birkenmeier, Kim
and Park [4] showed that if R is an abelian right P-exchange ring, then
R is weakly m-regular.

Recall that a ring R is called to be weakly right duo if for each a € R
there is a positive integer n = n(a), depending on a, such that a"R is
an ideal of R [19]. Note that every weakly right duo ring is an abelian
right quasi-duo ring by [19, Lemma 4] and [20, Proposition 2.2).

The following proposition extends the result of [20, Proposition 4.3].

PROPOSITION 1.4. If R is an abelian right P-exchange ring, then R
is weakly right duo.

PROOF. By [4, Corollary 2.16], R is weakly m-regular. Thus R/J(R)
is right weakly 7-regular and J(R) is nil. Since R is abelian exchange,
it is right quasi-duo by [5, Theorem 3.1(ii)(b)]. Thus by [13, Theorem
22), R is weakly right duo. O

COROLLARY 1.5. Let R be a right P-exchange ring. Then the fol-
lowing statements are equivalent:

(1) R is weakly right duo.
(2) R is abelian right quasi-duo.

The fact “every abelian exchange ring is a right quasi-duo ring” and
Proposition 1.4 suggest that abelian exchange rings may be weakly right
duo. However, the following example shows that this is not true. Thus
the condition “right P-exchange ring” cannot be replaced by the condi-
tion “exchange ring” in Proposition 1.4 and Corollary 1.5.
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ExAMPLE 1.6. [13, Example 23] Let S be the quotient field of the
polynomial ring F[t| over a field F with ¢ its indeterminate and define
a ring homomorphism ¢ : § — S by

<f(t)> _ f(#)
ol —=)= .
9() ) 9(#?)

Next consider the skew power series ring R = S|[z;0]], every element
is of the form Y - ; a,z™ over S and only subject to za = o(a)z for
a € S, where z is the indeterminate. Then R is an integral domain and
so 0 and 1 are the only idempotents of R; hence R is abelian. Moreover
R is local and so it is exchange with J(R) = Rz not nil, therefore it is
right quasi-duo. However, R is not weakly right duo.

2. Main results

Now, we study the relationship between the exchange property and
the maximality of prime ideals of rings.

The following example shows that the condition “R is an exchange
ring” is not equivalent to the condition “every prime ideal of R is max-
imal”.

ExaMPLE 2.1. (1) Let Mat,,(F') denote the ring of all » x n matrices
over a field F. Consider a ring

R =

A0 O--
0 a O--
0 0 a-.. | |A€Mat,(F)a€e F,n=12,...

Then it can be easily checked that R is m-regular and so it is exchange.
But (0) is a prime ideal of R which is not maximal.

(2) The ring R, in Example 1.2, is not exchange and so it is not 7-regular.
But every prime ideal of R is maximal because the prime radical P(R)
is the unique maximal ideal of R.

Let P(R), N,.(R) and N(R) be the prime radical, the unique maximal
nil ideal and the set of all nilpotent elements of R, respectively.

In [20], Yu proved that if R is a right quasi-duo ring, then N(R) C
J(R). However, there exists a ring R which satisfies the condition
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“N(R) C J(R)” or “Ny(R) C J(R)” where Ny(R) denotes the set of
all nilpotent element of bounded index 2, but R is not right quasi-duo.
For example, the ring R, in Example 1.2, is not right quasi-duo, but
N(R) = N2(R) = J(R).

Recall that a ring R is called to be 2-primal if P(R) = N(R) [2]. We
refer to [3], [4], [8], [10], [11] and [12] for more details on 2-primal rings.
Observe that R is a 2-primal ring if and only if P(R) = N,.(R) = N(R)
if and only if P(R) is a completely semiprime ideal of R (i.e., a® € P(R)
implies ¢ € P(R) for a € R). Also, N.(R) = N(R) if and only if
N,(R) is completely semiprime. Observe that the class of rings which
satisfies N,.(R) = N(R) properly contains the class of 2-primal rings
(see Example 2.9). Clearly, if R is 2-primal, then Na(R) C P(R). The
converse does not hold by [10, Example 1]. Moreover, the following
example, using the example [10, Example 1], shows that there exists a
ring R such that No(R) C N, (R), but R does not satisfy N,.(R) = N(R).

EXAMPLE 2.2. Let F(X,Y) be the free algebra on X, Y over a field
F and I denote the ideal (X2)? of F(X,Y), where (X?)? is the ideal
of F(X,Y) generated by X2. Consider the ring R = F(X,Y)/I. Then
No(R) = Rz2R = P(R), where z = X + I and N(R) = zRz + Rz®R +
Fz. Now, we claim N2(R) = N,.(R). If not, that is, P(R) = N2(R) C
N,(R), then N,(R)/P(R) is a nonzero nil ideal of S = R/P(R)(%
F(X,Y)/(X?)). But S is a prime ring and N(S) = N(S). Since
N, (R)/P(R) C N(S), we have a* = 0 for all @ € N,.(R)/P(R). By [11,
Lemma 11], @Sa = 0. Since S is prime, @ = 0 which is a contradiction.
Therefore P(R) = N2(R) = N,.(R), but N,.(R) C N(R).

However we have the following result.

PRrROPOSITION 2.3. Let R be an exchange ring. Then the following
statements are equivalent:

(1) R is right quasi-duo.

(2) N(R) € J(R).

(3) Na2(R) C J(R).

PRrROOF. (1)=-(2): It follows from [20, Lemma 2.3].
(2)=(3): It is trivial.
(3)=(1): Since R is exchange, R/J(R) is also a semiprimitive exchange
ring. So by [10, Theorem 2|, R/J(R) is reduced and so R/J(R) is
abelian exchange. Thus R/J(R) is right quasi-duo and hence R is right
quasi-duo. O
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The condition “R is an exchange ring” in Proposition 2.3 is not su-
perfluous by Example 1.2.

COROLLARY 2.4. Let R be an exchange ring whose prime ideals are
maximal. Then the following statements are equivalent:

(1) R is 2-primal.

(2) N..(R) = N(R).

(3) N(R) is a two-sided ideal of R.
(4) N2(R) € P(R).

(5) N2(R) € N(R).

(6) R is right quasi-duo.

ProoOF. (1)=(2)<(3) and (1)=-(4)=-(5): These are obvious.
(2)=(6) and (5)=>(6): These follow from Proposition 2.3 since N,.(R)
C J(R).

(6)=-(1): Since R is a right quasi-duo ring whose prime ideals are max-
imal, N(R) C J(R) = P(R) and so P(R) = N(R). Therefore R is
2-primal. O

Observe that the condition “all prime ideals are maximal” in Corol-
lary 2.4 is not superfluous by the following example and Example 2.9.

Recall that a ring R is said to be of bounded index (of nilpotency)
if there exists a positive integer n such that o™ = 0 for all nilpotent
elements a of R.

EXAMPLE 2.5. Let S = Mato(F) denote the ring of 2 x 2 matrices
over a field F and T = 8 0} €S|lac F} . Consider the ring R =
T + 25{[z]], where S[[z]] denotes the ring of all formal power series over
S. Then zS[[z]] is the unique maximal left and right ideal of R. Thus
R is a right quasi-duo ring and J(R) = zS[[z]] is not nil. Also, R is a
prime exchange ring of bounded index 2. Note that the ideal (0) is a
prime ideal of R which is not maximal. Moreover, R does not satisfy
N, (R) = N(R) and so it is not 2-primal. Note that R is not (right

weakly) m-regular because J(R) is not nil.

THEOREM 2.6. Let R be an exchange ring of bounded index. Then
the following statements are equivalent:

(1) R is strongly m-regular.

(2) R is m-regular.

(3) R/P(R) is m-regular.

(4) Every prime ideal of R is maximal.



On the maximality of prime ideals in exchange rings 417

PRrROOF. (1)=(2)=(3): These implications are clear.
(3)=(4): Since R is of bounded index, R/P(R) is also of bounded in-
dex. Thus by [9, Theorem 2|, every prime ideal of R/P(R) is maximal.
Therefore every prime ideal of R is maximal.
(4)=(1): Let P be a prime ideal of R. By [21, Theorem 3.11], R/P is
Artinian. So it is strongly m-regular. Thus by [7, Theorem 2.1], R is
strongly m-regular. O

The rings R, in Example 2.1(1) and (2), show that the condition “R
is a ring of bounded index” and the condition “R is an exchange ring”
in Theorem 2.6 are not superfluous, respectively.

COROLLARY 2.7. Let R be a ring of bounded index. Then the fol-
lowing statements are equivalent:

(1) R is strongly m-regular.
(2) R is w-regular.
(3) R is exchange whose prime ideals are maximal.

Proor. It follows directly from Theorem 2.6. O

The condition “every prime ideal of R is maximal” in Corollary 2.7(3)

is not superfluous by Example 2.5. Also, the condition “R is m-regular”
in Corollary 2.7(2) cannot be replaced by the condition “R is right
weakly 7m-regular” by Example 1.2. In fact, the ring R, in Example
1.2, is right weakly m-regular of bounded index 2 which is not exchange,
thus R is not w-regular. Observe that every prime ideal of R is maximal
because P(R) is the unique maximal ideal of R.
Moreover, the condition “R is a ring of bounded index” cannot be
dropped from Corollary 2.7. In fact, the ring R = Endp(V), where
V is an infinite dimensional vector space over a field F'. Then R is a von
Neumann regular ring of no bounded index. Thus R is w-regular, but it
is not strongly m-regular.

Note that if R is an exchange ring of bounded index, then every
primitive factor ring of R is Artinian. However, the condition “R is
a ring of bounded index” in Theorem 2.6 and Corollary 2.7 cannot be
replaced by the condition “every primitive factor ring of R is Artinian”
by Example 2.9.

THEOREM 2.8. Let R be a 2-primal exchange ring. The following
statements are equivalent:

(1) R is strongly m-regular.
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(2) R is m-regular.

(3) R is weakly m-regular.

(4) R is right weakly m-regular.

(5) R/J(R) is right weakly m-regular and J(R) is nil.
(6) R/P(R) is right weakly m-regular.

(7) Every prime ideal of R is maximal.

ProOOF. (1)=(2)=(3)=(4)=(5) and (4)=-(6): These implications
are trivial.
(5)<(7): Assume (5). Since J(R) is nil and R is 2-primal, J(R) = P(R).
By [3, Corollary 9], every prime ideal of R is maximal.
Conversely, Assume (7). By [3, Corollary 9], R/P(R) is right weakly
m-regular and so R/J(R) is right weakly w-regular. Now let a € J(R).
Consider @ € R = R/P(R). Since R is right weakly m-regular, there
exists a positive integer n such that @a* = a"7 for some 7 € Ra"R C
J(R), where J(R) = J(R)/P(R). Then a"(1—7) = 0 and so a” € P(R).
Since R is 2-primal, a € P(R) and hence J(R) is nil.
(6)=(1): Since R/P(R) is reduced exchange, it is right quasi-duo. By
[11, Proposition 7], R/P(R) is strongly m-regular. Note that every prime
factor ring of R is strongly w-regular. Therefore R is strongly m-regular
by [7, Theorem 2.1].
(7)=(1): Note that R is a right quasi-duo ring by Corollary 2.4. Thus
by [20, Theorem 2.5], R is strongly w-regular. d

Related to (5) and (6) in Theorem 2.8, we noted that there exists a
2-primal ring whose prime ideals are maximal, but it is neither right nor
left weakly m-regular [3, Example 12].

The following example shows that there exists an abelian exchange
(and so right quasi-duo) ring R which is not 2-primal such that R/J(R)
is right weakly w-regular and J(R) is nil, but R contains a prime ideal
which is not maximal. Hence the condition “R is 2-primal” in Theorem
2.8 is not superfluous and cannot be replaced by the condition “N,(R) =
N(R)”.

EXAMPLE 2.9. [4, Example 3.3] Let G be an abelian group which is
the direct sum of a countably infinite number of infinite cyclic groups
and denote by {b(0),b(1),b(—1), ... ,b(2),b(—%),... } of basis of G. Then
there exists one and only one homomorphism u(i) of G, for ¢ =1,2,...
such that u(i)(b(j)) = 0 if j = 0(mod 2¢) and u(i)(b(j)) = b(j — 1) if
j = O0(mod 2°). Denote U the ring of endomorphisms of G generated
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by the endomorphisms u(1),u(2),... . Now let A be the ring obtained
from U by adjoining the identity map of G. Let R = A ®z Q, where
Z is the integers and Q is the rational numbers. Then R is a strongly
m-regular right quasi-duo ring which satisfies N;(R) = N(R), but it is
not 2-primal. Thus R is an exchange ring such that R/J(R) is right
weakly m-regular and J(R) is nil. However, there exists a prime ideal
of R which is not maximal. Note that R is of no bounded index and it
is a local ring. Moreover, every primitive factor ring of R is Artinian
because R is right quasi-duo.

The class of 2-primal rings and the class of abelian rings are different
from each other by the ring of 2 x 2 upper triangular matrices over a field
and Example 2.9. The proof of the following theorem is an adaptation
from [13, Theorem 22].

THEOREM 2.10. Let R be an abelian exchange ring. If R/J(R) is
right weakly m-regular and J(R) is nil, then R is strongly m-regular.

PRrROOF. Since R is an abelian exchange ring, it is right quasi-duo.
By [11, Theorem 7], R/J(R) is strongly m-regular and so R/J(R) is
strongly regular. Thus for each = € R, there exists y € R such that
x — zyz € J(R). Denote z + J(R) by Z. Since R is exchange, every
idempotent can be lifted to an idempotent of R. Then there exists
e?2 = e € R such that € = 7§ and we get Z = €Z. But x — ez is nilpotent
so there exists a positive integer n such that (z—ez)™ = 0. Thusz™ € eR
because e is central. Now € = Zj is central in R/J(R) whence we obtain
€ =17 =xz°y> =--- = Z"§". Then it follows that e —z"y" € J(R), and
(e—z™y™)™ = 0 for some positive integer m. Now we have e € 2™ R and
consequently "R = eR. Thus ™ = er,e = z"s for some r,s € R. Then
" = z"e = 22"s € "R C "' R. Therefore R is strongly n-regular.C]

Recall that a ring R is called to be biregular if for each x € R, the
ideal Rz R is generated by a central idempotent. Biregular rings are right
weakly m-regular rings. Note that the biregularity of a ring R implies
that all prime ideals of R are maximal, while the converse is not true in
general.

COROLLARY 2.11. Let R be an abelian exchange ring. The following
statements are equivalent:

(1) R is strongly m-regular.

(2) R is m-regular.

(3) R/P(R) is m-regular.



420 Chan Yong Hong, Nam Kyun Kim, and Tai Keun Kwak

(4) R is weakly m-regular.

(5) R is right weakly m-regular.

(6) R/P(R) is right weakly m-regular.

(7) R/J(R) is right weakly m-regular and J(R) is nil.
(8) R/J(R) is biregular and J(R) is nil.

PRrROOF. (2)<(3): It follows directly from [1, Corollary 2].
(5)<(6): It follows from [11, Theorem 7] and [1, Corollary 2] because R
is right quasi-duo.
(1)=(2)=(4)=(5)=(7) and (8)=(7): These implications are clear.
(7)=(1): Tt follows from Theorem 2.10.
(7)=(8): Note that R/J(R) is strongly m-regular by [11, Theorem 7]
because R/J(R) is right quasi-duo. Moreover, R/J(R) is reduced by
[20, Lemma 2.3]. Therefore R/J(R) is strongly regular and so it is
biregular. a

ProposITION 2.12. Let R be an abelian exchange ring of bounded
index. Then the following statements are equivalent:
(1) R/J(R) is right weakly w-regular and J(R) is nil.
(2) Every prime ideal of R is maximal.

PRrOOF. (1)=(2): Since R is a right quasi-duo ring of bounded index
with J(R) nil, R is 2-primal by [11, Proposition 12]. By Theorem 2.8,
every prime ideal of R is maximal.

(2)=(1): It follows from [20, Theorem 2.5] because R is right quasi-
duo. (]

In Proposition 2.12, the condition “R is of bounded index” is not
superfluous by Example 2.9. In fact, the ring R, in Example 2.9, is
an abelian exchange (and so right quasi-duo) ring with J(R) nil and
R/J(R) is right weakly m-regular. But there exists a prime ideal of R
which is not maximal.

We also note that the condition “R is a ring of bounded index” in Propo-
sition 2.12 cannot be replaced by the condition “every primitive factor
ring of R is Artinian” by Example 2.9.

Related to Proposition 2.12, observe that if R is an abelian P-exchange
ring of bounded index, then every prime ideal of R is maximal; but the
ring R, in Example 1.1, is an abelian exchange ring of bounded index
and there exists some prime ideal of R which is not maximal.
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