• 제목/요약/키워드: evaporative cooling

검색결과 120건 처리시간 0.026초

우리나라에서의 증발식 냉각의 효용성

  • 민만기
    • 대한설비공학회지:설비저널
    • /
    • 제3권3호
    • /
    • pp.199-208
    • /
    • 1974
  • The effectiveness with which evaporative cooling can be used in Korea was analysed by making use of weather data of 15cities in a past decade. In ASHRAE comfort chart for a still air atmospheric condition was divided into two dimensional array, 14 zones by effective temperature and 10 zones by relative humidity, and all hours of weather condition in those zones were. computed from every 4 hours weather data in a past decade. From this computation obtained were for 15 cities : 1. average annual total hours above $23^{\circ}C$ ET 2. effective temperatures with $5\%$ excess factor, and 3. ratios of all hours in wet (above $25.6^{\circ}C$ WBT), intermediate $(22^{\circ}C\;to\;25.6^{\circ}C\;WBT)$, and dry $(below\;22^{\circ}C\;WBT)$ area to total hours in whole area on comfort chart beyond $23^{\circ}C$ ET to effective temperature of $5\%$ excess factor. It was shown from this computational result that in Korea evaporative cooling was not effective for building and residential comfort air conditioning but could be useful for comfort air conditioning in industry and industrial air conditioning, depending upon the air stream velocity and the type of application.

  • PDF

Investigation on the Reduction Effect on Cooling Power Consumption and Operating Cost of Mist-spray Outdoor Units in Air Conditioner

  • Lee, Keon-ho;Cho, Dong-woo;Kim, Hyemi;Song, Young-hak
    • Architectural research
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2017
  • The use of the air conditioner is increasing due to the rise of the outdoor temperature during summer, and the problems of the fire and the cooling performance deterioration are caused due to lack of maintenance of the outdoor unit. In particular, overall performance of cooling system and efficiency in outdoor units have been degraded due to an intake of high-temperature outdoor air thereby increasing cooling energy and operating cost. Thus, this study aimed to increase efficiency of outdoor units by evaporating and cooling intake air through mist spray at the intake port surface in the outdoor unit. The measurements results showed that total power consumption of misting outdoor unit compared to that of conventional outdoor units was reduced by 21% approximately, and total power consumption of the entire system including pump was reduced by 16.7%. In addition, the operating cost including water use was reduced by 13.5% approximately. In summary, if a mist-spray nozzle kit is installed in air-cooled outdoor units, the reduction in the usage of cooling energy and operating cost will be achieved without replacement of existing cooling systems or a large scale of repairs.

하절기 유리온실의 증발냉각 설계기준을 위한 VETH 선도 연구 (Studies of VETH Plot for Standard Design of Evaporative Cooling at Summer Glasshouse)

  • 우영회;안율균;김동억
    • 현장농수산연구지
    • /
    • 제20권1호
    • /
    • pp.55-66
    • /
    • 2018
  • 하절기 하우스 온도환경의 효율적 제어는 온실의 주년재배와 고도 활용을 위한 가장 중요한 당면과제이다. 본 연구는 여름철 지역별 하우스 증발냉각을 위한 설계 기준안으로서 9개 지역(서울, 서산, 대전, 부산, 제주, 광주, 대구, 전주, 진주)의 VETH 선도를 작성하여 제시하였다.

하이브리드 제습냉방시스템의 성능평가 연구 (A Study on the Performance Evaluation of a Hybrid Desiccant Cooling System)

  • 황원백;김용찬;이대영
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.121-128
    • /
    • 2012
  • Improvement in the energy efficiency has been studied of the desiccant cooling system by applying a vapor compression type heat pump to modify the system into a hybrid system. The cycle simulation was performed and the results were compared between a reference desiccant cooling system composed of a desiccant rotor, a sensible rotor and a regenerative evaporative cooler, and a hybrid desiccant cooling system with the sensible rotor being replaced by a heat pump. Though the electric consumption increases as much as the compressor power consumption, the total cooling capacity increases and the thermal energy input decreases by the addition of the heat pump. Therefore, the total energy efficiency can be improved if the increase in the electric consumption can be compensated with the increase in the cooling capacity and the decrease in the thermal energy input. The results showed that the total energy efficiency is optimized at a certain heat pump capacity. When the heat from the CHP plant is used for the thermal energy input, the energy consumption of the hybrid system is reduced by 20~30% compared with the reference system when the heat pump shares 30~40% of the total cooling capacity.

열전모듈 냉방기에서 열전모듈의 개수 및 전원배열이 시스템의 성능에 미치는 영향 (Effects of Thermoelectric Module Arrangement on the Performance of a Thermoelectric Air-Cooling System)

  • 황준;강병하
    • 설비공학논문집
    • /
    • 제19권2호
    • /
    • pp.162-168
    • /
    • 2007
  • This paper presents the effects of thermoelectric module arrangement on the cooling performance of an air conditioner using thermoelectric module. A prototype of air cooling system, employing several thermoelectric modules, has been designed and built. The evaporative cooling technique is adopted for hot side of the module. The number of thermoelectric module in the system has been varied in the range of $2{\sim}8$. The optimal operation conditions, such as input power to the thermoelectric module, fans and pump, have been determined for each arrangement of the system and the cooling performance has been compared under the optimal operation. It is found that both cooling capacity and COP are increased as the number of thermoelectric module increased. It is also found that cooling capacity can be improved by connecting the thermoelectric modules in series than in parallel, while the COP is little affected.

기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석 (Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1)

  • 이율호;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.

A Verification Study on the Temperature reduction Effect of Water Mist Injection

  • Kim, Jeong-Ho;Lee, Myung-Hun;Yoon, Yong-Han
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.5-14
    • /
    • 2015
  • Purpose: Recently, according to climate changes, human health is exposed to danger over the world and they influence all fields of human society. Due to these climate changes, humans can be exposed to more frequent and extreme scorching heat and cold wave than the present. As precautions against these urban higher temperature and dryness, diverse methods are being sought. Among them, as measures to form cold islands, the evaporative cooling effect realistic to social and economic conditions was examined. Method: This study was conducted to analyze effects of temperature reduction and cooling according to injection quantity of minute water particles by using a blast sprayer as one of alternatives of alleviation of urban climate changes in outside space in summer. For this, through temperature difference in accordance with the injection quantity per hour of a day, a time zone representing the value of the highest temperature change was analyzed. Also, by analyzing temperature difference according to the injection quantity per daytime insolation, relation of amounts of insolation and evaporation was investigated. Temperature difference in accordance with distances at the highest temperature with the highest value in temperature changes was analyzed. Result: At the study result, about temperature, as injection quantity increase, temperature reduction was significant statistically at the highest temperature with the most insolation. A factor with the highest influence was judged to be the increase of the injection quantity. According to the injection quantity, it was predicted that $3.1^{\circ}C$ temperature reduction of a daily average in case of 0.16L/min, $3.5^{\circ}C$ temperature reduction of a daily average in case of 0.32L/min, and $4.4^{\circ}C$ temperature reduction of a daily average in case of 0.48L/min.

중앙공조 및 개별공조에서의 외조기 적용 (Application of Four-season Dedicated Outdoor Air Handling Unit in Central and Personal Air-conditioning)

  • 박승태;김영일;이태호;최세영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.591-596
    • /
    • 2008
  • The present study has been conducted to study the performance of dedicated outdoor air handling unit in central and personal air-conditioning. With conventional central and personal air-conditioning systems which are designed according to the maximum load, humidity increase above comfort level can not be avoided as the cooling load decreases. The adoption of dedicated outdoor air handling unit, however, can solve this problem. Moreover, the dedicated outdoor air handling unit has the characteristics of anti-bacteria due to dry coil, energy saving and good indoor air quality. During cooling seasons, dedicated outdoor air handling unit can save energy up to 30% than the conventional cooling+reheating system for controlling both temperature and humidity.

  • PDF

하절기 온실의 활용실태 및 열환경분석 (Actual State of Practical Use and Thermal Environment of Greenhouses in Summer Season)

  • 남상운;김문기
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.418-423
    • /
    • 1999
  • This study was performed to find an efficient method to overcome extremely high temperature within greehhouse in summer season. The actual states of practical use for greenhouse in hot summer season were investigated. About 21.6% of the investigated greenhouse farms were no cultivation, and most greenhouse farms were cultivating under the very inferior environment . To examine thermal enviornment of greenhouse according to cooling or assistant cooling , greenhouses were treated with natural ventilation, shading, roof sprinkling , and evaporative cooling with air cool fan. Shading and operating air col fan showed a drop in temperature of 3.8∼4.2$^{\circ}C$ as compared with natural ventilation, and most greenhouse air temperatures were maintained below 35$^{\circ}C$.

  • PDF

하절기 온실의 활용실태 및 몇 가지 고온극복 방법별 열환경 분석 (Actual Utilization and Thermal Environment of Greenhouses According to Several Cooling Methods during Summer Season)

  • 남상운
    • 생물환경조절학회지
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 2000
  • 온실의 경제적 고온극복 방안의 방향 설정을 위한 기초 자료를 얻기 위하여 비닐하우스 96농가, 유리온실 75농가를 대상으로 하절기 온실의 활용실태를 조사한 결과 유리온실 18.7%, 비닐하우스 24.0%, 전체 21.6%의 시설재배 농가가 휴경하고 있었으며, 나머지 경우도 매우 열악한 환경 하에서 재배가 이루어지고 있었고, 고온 극복을 위한 저비용 기술의 개발에 관한 요구가 매우 높았다. 냉방 및 보조냉방 처리별 온실의 열환경을 비교 측정한 결과 자연환기만으로는 74.8%, 지붕살수시 58.2%가 35$^{\circ}C$를 초과하여 작물재배가 곤란한 것으로 나타났다 환기와 차광을 병행할 경우에는 26.9%만 35$^{\circ}C$를 초과하는 것으로 나타나 약간만 개선하면 어느 정도의 고온극복은 가능할 것으로 판단되었다. 차광과 증발냉각의 일종인 에어쿨팬의 가동으로 자연환기 온실에 비하여 3.8~4.2$^{\circ}C$의 냉방효과를 보였으며, 온실내의 기온을 대부분 35$^{\circ}C$ 이내로 유지하는 것이 가능한 것으로 나타났다. 증발냉각시스템의 도입으로 고온극복이 가능하지만 확대보급을 위해서는 비용절감 및 체계화기술 개발이 과제로 남아 있다. 한편, 차광과 고효율의 환기로 어느 정도의 고온극복이 가능하므로 비교적 시설비 투자가 적은 온실에 대하여는 환기시스템 및 차광방법 개선 등의 연구를 통한 경제적인 고온극복 방안 설정이 필요할 것으로 판단되었다.

  • PDF