• Title/Summary/Keyword: eulerian

Search Result 518, Processing Time 0.028 seconds

Direct Simulation of Flows and Flow Noise around Moving Body by FDLBM with ALE Model (ALE모델을 갖는 차분격자볼츠만법에 의한 이동물체 주위의 유동장 및 유동소음의 직접계산)

  • Kang, Ho-Keun;Michihisa, Tsutahara;Kim, Myoung-Ho;Kim, Yu-Taek;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.248-249
    • /
    • 2005
  • In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in FDLBM. The effect of the ALE is checked by comparing flow about a square cylinder in ALE formulation and that in the fixed coordinates, and the results show good agreement. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer zone is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in 2- and 3-dimensional cases are simulated.

  • PDF

Computations of Compressible Two-phase Flow using Accurate and Efficient Numerical Schemes

  • Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.13-17
    • /
    • 2006
  • RoeM and AUSMPW+ schemes are two of the most accurate and efficient schemes which are recently developed for the analysis of single phase gas dynamics. In this paper, we developed two-phase versions of these schemes for the analysis of gas-liquid large density ratio two-phase flow. We adopt homogeneous equilibrium model (HEM) using mass fraction to describe different two phases. In the Eulerian-Eulerian framework, HEM assumes dynamic and thermal equilibrium of the two phases in the same computational mesh. From the mixture equation of state (EOS), we derived new shock-discontinuity sensing term (SDST), which is commonly used in RoeM and AUSMPW+ for the stable numerical flux calculation. The proposed two-phase versions of RoeM and AUSMPW+ schemes are applied on several air-water two-phase test problems. In spite of the large discrepancy of material properties such as density, enthalpy, and speed of sound, the numerical results show that both schemes provide very satisfactory solutions.

  • PDF

Structure of Particle Clusters Formed in Gas-Solid flows

  • Tanaka, Toshitsugu;Ito, Akihito;Tsuji, Takuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.26-27
    • /
    • 2006
  • Characteristics of spatial structure of particle clusters are investigated by using the flow field data obtained from three-dimensional numerical simulations. Eulerian/Lagrangian approach with two-way coupling is applied and individual particle-particle collisions are taken into account by using the hard-sphere model. More than 16 million particles are traced in the maximum case. The results show that the cluster is consisted from the multiple-spatial scale components while the low wave-number, hence the large-scale structure, is dominant. Three-dimensional structure reconstructed from the low-pass filtered data enables us to investigate the essential dynamics of particle clusters in detail.

  • PDF

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

Adaptive Unstructured-Grid Computation of Shock Wave Propogation in the Gas-Particle Suspension (비정렬 적응격자를 이용한 기체-입자 혼합유체에서의 충격파 전파의 계산)

  • Park Ki-Cheol;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.36-41
    • /
    • 1999
  • Shock wave propagating in the particle suspension has important applications. Examples are shock waves occurring in the solid rocket plume and detonation of dusty particles by shock waves. Experimental and numerical investigations on this subject have drawn much attention. More recently, Sivier et al. numerically simulated the experiment of Sommerfeld using the unstructured adaptive grid. They used the Eulerian-Eulerian approach based on the continuum assumption for both gas and particles. In the present paper, a new numerical method using the Lagrangian particle tracing technique and unstructured particle-adaptive grid for the polydisperse system is presented. It is explained why the existing numerical calculation has showed discrepancy with the experimental results by Sommerfeld.

  • PDF

Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method (피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석)

  • Choi J. W.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

ALE-Based FSI Simulation of Solid Propellant Rocket Interior (ALE 기반의 고체 로켓 내부 유체-구조 연계 해석)

  • Han, Sang-Ho;Choi, H.S.;Min, D.H.;Kim, C.;Hwang, Chan-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

An ALE Finite Element Method for Baffled Fuel Container in Yawing Motion

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Kim, Min-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.460-470
    • /
    • 2004
  • A computational analysis of engineering problems with moving domain or/and boundary according to either Lagrangian or Eulerian approach may encounter inherent numerical difficulties, the extreme mesh distortion in the former and the material boundary indistinctness in the latter. In order to overcome such defects in classical numerical approaches, the ALE(arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical works is also presented.

Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo;Joo, Yong-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF