• Title/Summary/Keyword: ethylene oxide separation

Search Result 19, Processing Time 0.018 seconds

Determination and Ethylene Oxide(EO) Separation of Polysorbates by RP-HPLC (역상 HPLC에 의한 polysorbates의 산화에틸렌(EO) 분리 및 정량분석)

  • Lee, Yong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.585-593
    • /
    • 2012
  • The EO separation and quantitative determination of polysorbate 20, polysorbate 40, polysorbate 60 and polysorbate 80 was carried out by reversed phase HPLC. The water/acetonitrile was used for the mobile phase of gradient conditions. An YMC Pack Ph ($250mm{\times}4.6mm$ i.d., $5{\mu}m$) and Phenomenex C4 ($250mm{\times}4.6mm$ i.d., $5{\mu}m$) and the selected ELSD detector was applied. The analysis results of HPLC showed good linearity with correlation coefficient of $r^2$=0.997 in the rage of $180.2{\sim}980.5{\mu}g/mL$ and detection limit.

Fabrication of Poly(ethylene oxide)/Ag Nanoparticles/p-benzoquinone Composite Membrane Using AgNO3 Precursor for Olefin/Paraffin Separation (올레핀/파라핀 분리용 AgNO3 전구체를 활용한 poly(ethylene oxide)/Ag nanoparticles/p-benzoquinone 복합체 분리막 제조)

  • kim, Minsu;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.260-264
    • /
    • 2018
  • Poly (ethylene oxide) (PEO)/Ag nanoparticles (AgNPs)(precursor : $AgBF_4$)/p-benzoquinone (p-BQ) composite membrane was prepared for olefin/paraffin separation. As a result, the performance of composite membrane was observed to be maintained at selectivity of 10 and permeance of 15 GPU up to 100 hours. The performance of the membrane was maintained for 100 hours was attributable to that Ag ions could be converted into stable Ag NPs by addition of p-BQ. Furthermore, the surface was partially polarized by the electron acceptor p-BQ, resulting in the formation of olefin carrier. In this study, since the cost of $AgBF_4$ used as a precursor of Ag NPs was relatively higher, $AgNO_3$ was utilized. As a result, it was confirmed that $AgNO_3$ couldn't show the stable formation of nanoparticle, resulting in the poor separation performance.

Poly(ethylene oxide)/AgBF4/Al(NO3)3/Ag2O Composite Membrane for Olefin/Paraffin Separation (올레핀/파라핀 분리를 위한 poly(ethylene oxide)/AgBF4/Al(NO3)3/Ag2O 복합체 분리막)

  • Jeong, Sooyoung;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • For the separation of olefins/paraffins, $Poly(ethylene oxide)(PEO)/AgBF_4/Al(NO_3)_3/Ag_2O$ composite membranes were prepared. When $Ag_2O$ was introduced, the initial selectivity and permeance of composite membranes were observed to be 13.7 and 21.7 GPU, respectively. The increase in performance compared to the initial performance of $PEO/AgBF_4/Al(NO_3)_3$ membrane (selectivity 13 and permeance 7.5 GPU) was thought to be due to the increase of Ag ion activity due to the addition of $Ag_2O$. However, performance degradation over time was observed, which was thought to be due to the polymer matrix PEO. Since the PEO polymer could not stabilize the $Ag_2O$ particles, the $Ag_2O$ particles becmae aggregated together as the solvent evaporates, and $Ag_2O$ acts as a barrier. As a result, the permeance decreases over time.

The Electrical Conductivity Characteristic of Polyaniline/Poly(ethylene oxide) Blends Prepared by In-Situ Polymerization of Aniline (용액중합에 의해 제조된 폴리아닐린/폴리에틸렌옥사이드 블렌드의 전기전도도 특성에 관한 연구)

  • 이동규;차국헌;이희우;김진환
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • Polyaniline (PANi)/Poly(ethylene of oxide) (PEO) in-situ blends were prepared by inducing phase separation through solvent evaporation after casting from solutions containing aniline monomer, oxidant (initiator), dopant and PEO in methanol/water mixed solvent. It was observed that the electrical conductivity first increases rapidly as PANi amount in the PANi/PEO blend increases and then slowly increases as the weight percentages of polyaniline become above 11 wt% in the blend. We also noted that the morphology of PANi/PEO blends changes when the holding time in a stirrer at constant temperature is varied and eventually affects the electrical conductivity. As the length of alkyl group in dopants increases, the electrical conductivity of doped blends increases. The PANi/PEO blend prepared with a high molecular weight of PEO yields higher electrical conductivity.

  • PDF

Polymeric Additive Influence on the Structure and Gas Separation Performance of High-Molecular-Weight PEO Blend Membranes (고분자량 PEO 기반 분리막에 대한 다양한 고분자 첨가제의 영향 분석)

  • Hyo Jun Min;Young Jae Son;Jong Hak Kim
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.192-203
    • /
    • 2024
  • The advancement of commercially viable gas separation membranes plays a pivotal role in improving CO2 separation efficiency. High-molecular-weight poly(ethylene oxide) (high-Mw PEO) emerges as a promising option due to its high CO2 solubility, affordability, and robust mechanical attributes. However, the crystalline nature of high-Mw PEO hinders its application in gas separation membranes. This study proposes a straightforward blending approach by incorporating various polymeric additives into high-Mw PEO to address this challenge. Four commercially available, water-soluble polymers, i.e. poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), poly(acrylic acid) (PAA), and poly(vinyl pyrrolidone) (PVP) are examined as additives to enhance membrane performance by improving miscibility and reducing PEO crystallinity. Contrary to expectations, PEG and PPG fail to inhibit the crystalline structure of PEO and result in membrane flaws. Conversely, PAA and PVP demonstrate greater success in altering the crystal structure of PEO, yielding defect-free membranes. A thorough investigation delves into the correlation between changes in the crystalline structure of high-Mw PEO blend membranes and their gas separation performance. Drawing from our findings and previously documented outcomes, we offer insights into designing and selecting additive polymers for high-Mw PEO, aiming at the creation of cost-effective, commercially viable CO2 separation membranes.

Separation of Bacteria Using Capillary Electrophoresis (모세관 전기영동을 이용한 박테리아의 분리)

  • Moon, Byoung-Geoun;Choi, Kyu-Seong;Lee, Sang-Chun;Kim, Yong-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.144-150
    • /
    • 2004
  • Various experimental factors that affect the separation of bacteria were investigated using capillary electrophoresis. At different buffer concentrations, gram-positive bacteria and gram-negative bacteria showed somewhat different migration behavior under high electric filed. The separation efficiency was also investigated as a function of concentration of bacterium injected into the capillary. In order to separate bacteria as the difference of size and shape, water soluble polymers such as poly(ethylene)oxide (PEO), polyvinylpyirrolidone (PVP), and dextran were studied. PEO, which is more flexible and has lower steric hinderance, showed the best separation efficiency. The mixed bacteria sample of Micrococcus lysodeikticus as gram-positive bacteria and Aerobacter aerogenes as gram-negative bacteria were successfully analyzed with PEO.

Gas Separation Properties of Poly(ethylene oxide) and Poly(ethylene-co-vinyl acetate) Blended Membranes (Poly(ethylene oxide)와 Poly(ethylene-co-vinyl acetate)의 혼합막에 대한 기체분리 특성)

  • Lee, Hyun Kyung;Kang, Min Ji
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • In this study, we investigated permeation properties of single gas ($N_2$, $O_2$, $CO_2$) through membranes composed of poly(ethylene oxide) (PEO) and poly(ethylene-co-vinyl acetate) (EVA) blend. The prepared membranes showed no new absorbance peaks, which indicate the physical blending of PEO and EVA by FT-IR analysis. SEM observation showed that the crystalline phase of PEO decreased with increasing EVA content in the PEO/EVA mixed matrix. DSC analysis showed that the crystallinity of the PEO/EVA blend membrane decreased with increasing EVA content. Gas permeation experiment was performed with various feed pressure (4~8 bar). The permeability increased in the following order: $N_2$ < $O_2$ < $CO_2$. The permeability of $CO_2$ in PEO/EVA blend membranes were increased with increasing feed pressure, However, the permeability of $N_2$ and $O_2$ were independent of feed pressure. On the other hand, the permeability of all the gases in PEO/EVA blend membranes increased with increasing amorphous EVA content in semi-crystalline PEO. In particular, the blend membrane with 40 wt% EVA showed $CO_2$ permeability of 64 Barrer and $CO_2/N_2$ ideal selectivity of 61.5. The high $CO_2$ permeability and $CO_2/N_2$ ideal selectivity are attributed to strong affinity between the polar ether groups of PEO or the polar ester groups of EVA and polar $CO_2$.

DNA Separation Using Cellulose Derivatives and PEO by PDMS Microchip

  • Kang, Chung-mu;Back, Seung-Kwon;Song, In-gul;Choi, Byung-ok;Chang, Jun-keun;Cho, Keun-chang;Kim, Yong-seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.519-523
    • /
    • 2006
  • Poly(dimethyl siloxane) (PDMS) has been employed as a microchip material for DNA separation in microfluidic condition. Different sieving molecules such as cellulose derivatives having glucose building block (methyl cellulose (MC), hydroxyethyl cellulose (HEC), and hydroxypropyl methyl cellulose (HPMC)) and polyethylene oxide (PEO) having linear (ring-opened ethylene oxide) unit were used and their performance was compared in terms of separation efficiency and resolution. In general, PEO showed better separation performance than cellulose derivatives probably due to the nature of linear shape polymer conformation. It was possible to perform at least 15 consecutive running with 1.2% PEO at the electric field strength around 200 V/cm. Fast analysis of the standard $\Phi$X 174 RF DNA/Hae III (less than 130s) was obtained with the number of the theoretical plate around 250,000/m. Our PMDS microchip was applied to the measurement of CAG repeat number, which is related to male infertile disease.

Preparation and Characterization of Highly Permeable Facilitated Olefin Transport Nanocomposite Membrane Utilizing 7,7,8,8-tetracyanoquinodimethane (7,7,8,8-Tetracyanoquinodimethane를 활용한 고투과성 올레핀 촉진수송 나노복합체 분리막 제조 및 특성 분석)

  • Hwang, Jeonghyun;Lee, Eun Yong;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.417-422
    • /
    • 2014
  • The poly(ethylene oxide) (PEO)/Ag Nanoparticles (NPs)/7,7,8,8-Tetracyanoquinodimethane (TCNQ) membrane was fabricated to obtain highly permeable facilitated olefin transport nanocomposite membrane, compared with PEO/Ag NPs/p-Benzoquinone (p-BQ) membrane. Polymer matrix, PEO and silver nanoparticle precursor $AgBF_4$ were fixed at 1 : 0.4 mole ratio and electron acceptor TCNQ content was controlled variously. And the best olefin separation performance was obtained at 1/0.4/0.004 mole ratio, and long-term separation performance was measured at this ratio. As a result, mixed-gas permeance decreased from 23 to 6 GPU, and selectivity decreased from 6 to 2 (propylene/propane) after 32 hours.