Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.147

Gas Separation Properties of Poly(ethylene oxide) and Poly(ethylene-co-vinyl acetate) Blended Membranes  

Lee, Hyun Kyung (Department of Chemical Engineering and Materials Science, Sangmyung Unicersity)
Kang, Min Ji (Department of Chemical Engineering and Materials Science, Sangmyung Unicersity)
Publication Information
Membrane Journal / v.27, no.2, 2017 , pp. 147-153 More about this Journal
Abstract
In this study, we investigated permeation properties of single gas ($N_2$, $O_2$, $CO_2$) through membranes composed of poly(ethylene oxide) (PEO) and poly(ethylene-co-vinyl acetate) (EVA) blend. The prepared membranes showed no new absorbance peaks, which indicate the physical blending of PEO and EVA by FT-IR analysis. SEM observation showed that the crystalline phase of PEO decreased with increasing EVA content in the PEO/EVA mixed matrix. DSC analysis showed that the crystallinity of the PEO/EVA blend membrane decreased with increasing EVA content. Gas permeation experiment was performed with various feed pressure (4~8 bar). The permeability increased in the following order: $N_2$ < $O_2$ < $CO_2$. The permeability of $CO_2$ in PEO/EVA blend membranes were increased with increasing feed pressure, However, the permeability of $N_2$ and $O_2$ were independent of feed pressure. On the other hand, the permeability of all the gases in PEO/EVA blend membranes increased with increasing amorphous EVA content in semi-crystalline PEO. In particular, the blend membrane with 40 wt% EVA showed $CO_2$ permeability of 64 Barrer and $CO_2/N_2$ ideal selectivity of 61.5. The high $CO_2$ permeability and $CO_2/N_2$ ideal selectivity are attributed to strong affinity between the polar ether groups of PEO or the polar ester groups of EVA and polar $CO_2$.
Keywords
PEO; EVA; PEO/EVA blend membranes; gas permeability; ideal selectivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. E. Powell and G. G. Qiao, "Polymeric $CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006).   DOI
2 B. K. Seo, J. H. Kim, H. S. Ahn, B. J. Chang, and K. H. Lee, "The state of the art of membranes technology for separation of carbon dioxide from flue gases", KIC news, 14, 1 (2011).
3 H. Lin and B. D. Freeman, "Gas solubility, diffusivity and permeability in poly(ethylene oxide)", J. Membr. Sci., 239, 105 (2004).   DOI
4 M. Yoshino, K. Ito, H. Kita, and K. Okamoto, "Effects of hard-segment polymers on $CO_2/N_2$ gas separation properties of poly(ethylene oxide)-segmented copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 1707 (2000).   DOI
5 V. I. Bondar, B. D. Freeman, and I. Pinnau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 2051 (2000).   DOI
6 J. H. Kim, S. Y. Ha, and Y. M. Lee "Gas permeation of poly(amide-6-b-ethylene oxide) copolymers", J. Membr. Sci., 190, 179 (2001).   DOI
7 R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002).   DOI
8 Y. Hirayama, Y. Kase, N. Tanihara, Y. Sumiyama, Y. Kusuki, and K. Haraya, "Permeation properties to $CO_2$ and $N_2$ of poly(ethylene oxide)-containing and crosslinked polymer films", J. Membr. Sci., 160, 87 (1999).   DOI
9 S. K. Kim and S. R. Hong "Gas permeation Characteristics of propanol/propan in Pebax-ZIF composite membranes", Membr. J., 24, 259 (2014).   DOI
10 J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membranes for carbon dioxide separation", Membr. J., 25, 547 (2015).   DOI
11 K. Okamoto, N. Umeo, S. Okamyo, K. Tanaka, and H. Kita, "Selective permeation of carbon dioxide over nitrogen through polyethylene-containing polyimide membranes", Chem. Lett., 22, 225 (1993).   DOI
12 K. Okamoto, M. Fujii, S. Okamyo, H. Suzuki, K. Tanaka, and H. Kita, "Gas permeation properties of poly(ether imide) segmented copolymers", Macromolecules, 28, 6950 (1995).   DOI
13 S. Cimmino, E. Martuscelli, M. Saviano, and C. Silvestre, "Miscibility of poly(ethylene oxide)/ poly(ethylene-co-vinyl acetate) blends: Simulation of phase diagram", Polymer, 32, 1461 (1991).   DOI
14 A. Car, C. Stropnik, W. Yave, and K. V. Peinemann, "PEG modified poly(amide-b-ethylene oxide) membranes for $CO_2$ separation ", J. Membr. Sci., 307, 88 (2008).   DOI
15 K. B. Kim, E. H. Cho, S. I. Cheong, H. K. Lee, and J. W. Rhim, "Gas separation study of PEBAX 3533 and PEG blended membranes", Membr. J., 23, 144 (2013).
16 S. Feng, J. Ren, K. Hua, H. Li, X. Ren, and M. Deng, "Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation", Sep. Purif. Technol., 116, 25 (2013).   DOI
17 A. Wolinska-Grabczyk, P. Kubica, and A. Jankowski, "Effect of the acetate group content on gas permeation through membranes based on poly(ethylene-co-vinyl acetate) and its blends", J. Membr. Sci., 443, 227 (2013).   DOI
18 S. Marais, E. Bureau, F. Gouanve, E. Ben Salem, Y. Hirata, A. Andrio, C. Cabot, and H. Atmani, "Transport of water and gases through EVA/PVC blend films-permeation and DSC investigations", Polymer Testing, 23, 475 (2004).   DOI
19 S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, and Z. Jiang, "Pebax-PEG-MWCNT hybrid membranes with enhanced $CO_2$ capture properties", J. Membr. Sci., 460, 62 (2014).   DOI