• 제목/요약/키워드: ethylene copolymer

검색결과 280건 처리시간 0.026초

공단량체의 종류 및 조성이 지글러-나타 중합된 이중 분자량 분포 고밀도 폴리에틸렌의 물성에 미치는 영향 (The Effect of Comonomer Type and Content on the Properties of Ziegler-Natta Bimodal High-Density Polyethylene)

  • Meng, Weijuan;Li, Hongbo;Li, Jianwei;Chen, Biaohua
    • 대한화학회지
    • /
    • 제55권4호
    • /
    • pp.673-679
    • /
    • 2011
  • 지글러-나타 촉매를 사용하여 에틸렌을 중합함으로써 다양한 공단량체의 종류와 조성을 갖는 이중 분자량 분포의 고밀도 폴리에틸렌이 합성되었다. 이들의 구조와 물성을 GPC, NMR, DSC, 인장 측정기를 이용하여 연구하였다. 에틸렌/1-헥센 공중합체가 에틸렌/1-부텐 공중합체보다 비슷한 조성을 가질 경우 높은 인장강도와 파단연신율을 가짐을 확인 하였다. 분자량은 고분자의 공단량체 비율이 증가할수록 감소하였다. 짧은 곁사슬은 결정화도에 영향을 주어 결과적으로 이중 분자량 분포를 갖는 고밀도 폴리에틸렌의 모폴로지와 기계적 물성에 영향을 미쳤다. SSA로 처리 후 다수의 발열 곡선이 관찰되었으며 이는 주로 에틸렌 배열길이와 라멜라 두께의 불균일성에 기인한다. 분포지수의 차이로부터 공단량체의 조성이 높은 폴리에틸렌의 SCB 분포가 균일도를 향상시킴을 알 수 있었다.

Investigations of Temperature Effect on the Conduction Mechanism of Electrical Conductivity of Copolymer/Carbon Black Composite

  • El Hasnaoui, M.;Kreit, L.;Costa, L.C.;Achour, M.E.
    • Applied Microscopy
    • /
    • 제47권3호
    • /
    • pp.121-125
    • /
    • 2017
  • This study deals the prediction of temperature effect on low-frequency dispersion of alternating current (AC) conductivity spectra of composite materials based on copolymer reinforced with carbon black (CB) particles. A sample of ethylene butylacrylate loaded with 13% of CB particles were prepared and investigated using the impedance spectroscopy representation in the frequency range from 40 Hz to 0.1 MHz and temperature range from $20^{\circ}C$ to $125^{\circ}C$. The dielectric constant, ${\varepsilon}^{\prime}$, and dielectric losses, ${\varepsilon}^{{\prime}{\prime}}$, were found to decrease with increasing frequency. The frequency dependence of the AC conductivity follows the universal power law with a large deviation in the high frequency region, the positive temperature coefficient in resistivity effect has been observed below the melting temperature which makes this composite potentially remarkable for industrial applications.

Study on Nanocomposite Thermoplastic Elastomer Gels

  • Paglicawan Marissa A.;Balasubramanian Maridass;Kim, Jin-Kuk
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.370-370
    • /
    • 2006
  • Thermoplastic elastomer gels, which has molecular networks composed of a microphase-separated multiblock copolymer swollen to a large extent by a low volatility mid-block selective solvent such as white oil have various applications. In this particular study, the effect of several network-forming nanoscale fillers such as two different graphite particles and carbon nanotube on the properties of TPE gels prepared from a microphaseordered poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer with an EB compatible white oil was studied. The linear viscoelastic behavior, sol-gel transition, x-ray diffraction and mechanical properties were discussed. The properties of thermoplastic elastomer gels hybrid with graphite prepared by mixing Poly(styrene-b-ethylene-co-butylene)-b-styrene) with paraffin oil and different amount of expandable graphite were found to increase the mechanical properties at only lower graphite concentration but tends to decrease when paraffin oil/SEBS ratio is lower. The gelation temperature is the same for all TPE gels with different amounts of graphite. Both storage (G') modulus loss (G") modulus of TPE gels slightly increase with addition of graphite.

  • PDF

Encapsulation of CdSe/ZnS Quantum Dots in Poly(ethylene glycol)-Poly(D,L-lactide) Micelle for Biomedical Imaging and Detection

  • Lee, Yong-Kyu;Hong, Suk-Min;Kim, Jin-Su;Im, Jeong-Hyuk;Min, Hyun-Su;Subramanyam, Elango;Huh, Kang-Moo;Park, Sung-Woo
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.330-336
    • /
    • 2007
  • Luminescent CdSe/ZnS QDs, with emission in the red region of the spectrum, were synthesized and encapsulated in poly(ethylene glycol)-poly(D,L-lactide) diblock copolymer micelles, to prepare water-soluble, bio-compatible QD micelles. PEG-PLA diblock copolymers were synthesized by ring opening polymerization of D,L-lactide, in the presence of methoxy PEG as a macro initiator. QDs were encapsulated with PEG-PLA polymers using a solid dispersion method in chloroform. The resultant polymer micelles, with encapsulated QDs, were characterized using various analytical techniques, such as UV- Vis measurement, light scattering, fluorescence spectroscopy, transmission electron microscopy (TEM) and atomic forced microscopy (AFM). The polymer micelles, with encapsulated QDs, were spherical and showed diameters in the range of 20-150 nm. The encapsulated QDs were highly luminescent, and have high potential for applications in biomedical imaging and detection.

Methotrexate-Incorporated Polymeric Micelles Composed of Methoxy Poly(ethylene glycol)-Grafted Chitosan

  • Jeong, Young-Il;Seo, Dong-Hyuk;Kim, Don-Gon;Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon;Park, Yoon-Kyung
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.538-543
    • /
    • 2009
  • In this study, methotrexate (MTX)-encapsulated polymeric micelles using methoxy poly(ethylene glycol) (MPEG)-grafted chitosan (ChitoPEG) copolymer were prepared. The MIX-incorporated polymeric micelles of ChitoPEG copolymer has a particle size of around 50-100 nm. In 1H nuclear magnetic resonance (NMR) study, the specific peaks of MTX disappeared in heavy water ($D_2O$) and only the specific peak of MPEG was observed, while all of the peaks were confirmed in dimethyl sulfoxide (DMSO). These results indicated that MTX was complexed with chitosan and then formed an ion complex inner-core of the polymeric micelle in an aqueous environment. The drug contents of the polymeric micelle were around $4{\sim}12%$ and the loading efficiency of MTX in the polymeric micelles was higher than 60% (w/w) for all of the formulations. The cytotoxicity of MIX and MTX-incorporated polymeric micelle against CT26 tumor cells was not significantly changed.

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung;Hwang, Su-Jong;Lee, Doo-Sung;Kim, Sung-Chul;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.72-78
    • /
    • 2009
  • Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.