Browse > Article
http://dx.doi.org/10.9729/AM.2017.47.3.121

Investigations of Temperature Effect on the Conduction Mechanism of Electrical Conductivity of Copolymer/Carbon Black Composite  

El Hasnaoui, M. (LASTID Laboratory, Physics Department, Faculty of Sciences, Ibn-Tofail University)
Kreit, L. (LASTID Laboratory, Physics Department, Faculty of Sciences, Ibn-Tofail University)
Costa, L.C. (I3N and Physics Department, University of Aveiro)
Achour, M.E. (LASTID Laboratory, Physics Department, Faculty of Sciences, Ibn-Tofail University)
Publication Information
Applied Microscopy / v.47, no.3, 2017 , pp. 121-125 More about this Journal
Abstract
This study deals the prediction of temperature effect on low-frequency dispersion of alternating current (AC) conductivity spectra of composite materials based on copolymer reinforced with carbon black (CB) particles. A sample of ethylene butylacrylate loaded with 13% of CB particles were prepared and investigated using the impedance spectroscopy representation in the frequency range from 40 Hz to 0.1 MHz and temperature range from $20^{\circ}C$ to $125^{\circ}C$. The dielectric constant, ${\varepsilon}^{\prime}$, and dielectric losses, ${\varepsilon}^{{\prime}{\prime}}$, were found to decrease with increasing frequency. The frequency dependence of the AC conductivity follows the universal power law with a large deviation in the high frequency region, the positive temperature coefficient in resistivity effect has been observed below the melting temperature which makes this composite potentially remarkable for industrial applications.
Keywords
Copolymer composite; Carbon black; Jonscher's power law; Permittivity; Positive temperature coefficient of resistivity effect;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aziz S B and Abidin Z H Z (2014) Electrical and morphological analysis of chitosan: AgTf solid electrolyte. Mater. Chem. Phys. 144, 280-286.   DOI
2 Blom P W M, Schoo H F M, and Matters M (1998) Electrical characterization of electroluminescent polymer/nanoparticles composite devices. Appl. Phys. Lett. 73, 3914-3916.   DOI
3 Bouknaitir I, Aribou N, Elhad Kassim S A, El Hasnaoui M, Melo B M G, Achour M E, and Costa L C (2017) Electrical properties of conducting polymer composites: Experimental and modeling approaches. Spectro. Lett. 50, 196-199.   DOI
4 Costa M M, Pires G F M, Terezo A J, Graca M P F, and Sombra A S B (2011) Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J. Appl. Phys. 110, 034107.   DOI
5 Dyre J C (1988) The random free energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 64, 2456-2468.   DOI
6 El Hasnaoui M, Triki A, Achour M E, and Arous M (2014) Modelling of dielectric relaxation processes of epoxy-resin filled with carbon black particles. Physica B 433, 62-66.   DOI
7 Elliot S R (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. J. Adv. Phys. 36, 135-217.   DOI
8 Kilbride B E, Coleman J N, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, and Blau W J (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymercarbon nanotube composite thin films. J. Appl. Phys. 92, 4024-4030.   DOI
9 Kimura T and Kajiwara M (1998) Electrical properties of poly(nbutylamino) (di-allylamino) phosphazene. J. Mater. Sci. 33, 2955-2959.   DOI
10 Macutkevic J, Kuzhir P, Paddubskaya A, Makimono S, Banys J, Celzard A, Fierro V, Bistarelli S, Cataldo A, Micciulla F, and Bellucci S (2013) Electrical transport in carbon black-epoxy resin composites at different temperatures. J. Appl. Phys. 114, 033707.   DOI
11 Mdarhri A, Brosseau C, and Carmona F (2007) Microwave dielectric properties of carbon black filled polymers under uniaxial tension. J. Appl. Phys. 101, 084111.   DOI
12 Mohamed A, Miane J L, and Zangar H (2001) Radiofrequency and microwave (10kHz-8GHz) electrical properties of polypyrrole and polypyrrole-poly(methyl methacrylate) composites. Polym. Int. 50, 773-777.   DOI
13 Song C H, Choi H W, Kim M, Jin G Y, and Yang Y S (2007) Electrical Relaxations of Amorphous xKNbO-3 (1-x) SiO-2 (x=0.33, 0.5, 0.67, 0.8). J. Korean Phys. Soc. 51, 674-677.   DOI
14 Nigrawal A and Chand N (2013) Electrical and dynamic mechanical analysis of nano alumina addition on polyvinyl alcohol (Pva) composites. Prog. Nanotechnol. Nanomater. 2, 25-33.
15 Ouewsleti A, Hilel F, Guidara K, and Gargouri M (2010) AC conductivity analysis and dielectric relaxation behavior of $[N(C_3H_7)_4]_2Cu_2Cl_6$. J. Alloys Compd. 49, 508-514.
16 Rim Y H, Lee B S, Choi H W, Cho J H, and Yang Y S (2006) Electrical relaxation of bismuth germanate silicate glasses. J. Phys. Chem. B 110, 8094-8099.   DOI
17 He D, Li Y, Wang J, Yang Y, and An Q (2016) Tunable nanostructure of TiO2/reduced graphene oxide composite for high photocatalysis. Appl. Microsc. 46, 37-44.   DOI
18 Xu H, Zhang S, Anlage S M, Hu L, and Grüner G (2008) Frequencyand electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density. Phys. Rev. B 77, 075418.   DOI
19 Abazine K, Anakiou H, El Hasnaoui M, Grac M P F, Fonseca M A, Costa L C, Achour M E, and Oueriagli A (2016) Electrical conductivity of multiwalled carbon nanotubes/polyester polymer nanocomposite. J. Compos. Mater. 50, 3283-3290.   DOI
20 El-Nahass M M, Farid A M, and Atta A A (2016). AC conductivity and dielectric relaxation of bulk tris. (8-hydroxyquinoline) aluminum organic semiconductor. Opt. Quant. Electron. 48, 458.   DOI
21 Jonscher A K (1983) Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London).