Browse > Article

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation  

Lee, Jae-Sung (Department of Polymer Science & Engineering, Sungkyunkwan University)
Hwang, Su-Jong (Department of Polymer Science & Engineering, Sungkyunkwan University)
Lee, Doo-Sung (Department of Polymer Science & Engineering, Sungkyunkwan University)
Kim, Sung-Chul (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Kim, Duk-Joon (Department of Chemical Engineering, Sungkyunkwan University)
Publication Information
Macromolecular Research / v.17, no.2, 2009 , pp. 72-78 More about this Journal
Abstract
Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.
Keywords
nanoparticle; drug delivery; nanoprecipitation; poly($\varepsilon$-caprolactone);
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 V. J. Chen, L. A. Smith, and P. X. Ma, Biomaterials, 27, 3973 (2006)
2 F. X. Hu, K. G. Neoh, and E. T. Kang, Biomaterials, 27, 5725 (2006)   DOI   ScienceOn
3 T. Govender, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis, J. Control. Release, 57, 171 (1999)   DOI   ScienceOn
4 C. Allen, Y. S. Yu, D. Maysinger, and A. Eisenberg, Bioconjugate Chem., 9, 564 (1998)   DOI   ScienceOn
5 H. Cohen, R. J. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, and G. Golomb, Gene Ther., 7, 1896 (2000)   DOI   ScienceOn
6 C. Choi, M. Jang, and J. Nah, Macromol. Res., 15, 623 (2007)   DOI
7 C. Deng, H. Y. Tian, P. B. Zhang, J. Sun, X. S. Chen, and X. B. Jing, Biomacromolecules, 7, 590 (2006)   DOI   ScienceOn
8 S. C. Lee, C. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong, J. Control. Release, 89, 437 (2003)   DOI   ScienceOn
9 G. Z. Zhu, S. R. Mallery, and S. P. Schwendeman, Nat. Biotechnol., 18, 52 (2000)   DOI   ScienceOn
10 W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002)   DOI   ScienceOn
11 X. D. Yuan, L. Li, A. Rathinavelu, J. S. Hao, M. Narasimhan, M. He, V. Heitlage, L. Tam, S. Viqar, and M. Salehi, J. Nanosci. Nanotechno., 6, 2821 (2006)   DOI   ScienceOn
12 H. Pihlajamaki, O. Bostman, O. Tynninen, and O. Laitinen, Bone, 39, 932 (2006)   DOI   ScienceOn
13 R. T. Liggins and H. M. Burt, Int. J. Pharm., 222, 19 (2001)   DOI   ScienceOn
14 H. W. Ouyang, S. L. Toh, J. Goh, T. E. Tay, and K. Moe, J. Biomed. Mater. Res. B, 75B, 264 (2005)
15 H. Zhang and S. Gao, Int. J. Pharm., 329, 122 (2007)   DOI   PUBMED   ScienceOn
16 Y. Z. Zhang, Z. M. Huang, X. J. Xu, C. T. Lim, and S. Ramakrishna, Chem. Mater., 16, 3406 (2004)   DOI   ScienceOn
17 S. R. Bhattarai, N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim, Biomaterials, 25, 2595 (2004)   DOI   ScienceOn
18 O. Laitinen, H. Pihlajamaki, A. Sukura, and O. Bostman, J. Biomed. Mater. Res., 61, 33 (2002)   DOI   ScienceOn
19 C. Park, M. Rhue, J. Lim, and C. Kim, Macromol. Res., 15, 39 (2007)   DOI
20 M. Lee, T. T. Chen, M. L. Iruela-Arispe, B. M. Wu, and J. C. Y. Dunn, Biomaterials, 28, 1862 (2007)   DOI   ScienceOn
21 H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003)   DOI   ScienceOn
22 W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002)   DOI   ScienceOn
23 E. Walter, K. Moelling, J. Pavlovic, and H. P. Merkle, J. Control. Release, 61, 361 (1999)   DOI   ScienceOn
24 S. J. Im, Y. M. Choi, E. Subramanyam, K. M. Huh, and K. Park, Macromol. Res., 15, 363 (2007)   DOI
25 Q. Huang, D. W. Hutmacher, and E. H. Lee, Tissue Eng., 8, 469 (2002)   DOI   ScienceOn
26 R. C. Edwards, K. D. Kiely, and B. L. Eppley, J. Oral Maxil. Surg., 59, 19 (2001)   DOI   ScienceOn
27 X. B. Xiong, A. Mahmud, H. Uludag, and A. Lavasanifar, Biomacromolecules, 8, 874 (2007)   DOI   ScienceOn
28 J. H. You, S. W. Choi, J. H. Kim, and Y. T. Kwak, Macromol. Res., 16, 609 (2008)   DOI
29 C. T. Lee, C. P. Huang, and Y. D. Lee, Biomacromolecules, 7, 2200 (2006)   DOI   ScienceOn
30 H.Y. Lee, S. A. Yu, K. H. Jeong, and Y. J. Kim, Macromol. Res., 15, 547 (2007)   DOI