Browse > Article
http://dx.doi.org/10.5012/jkcs.2011.55.4.673

The Effect of Comonomer Type and Content on the Properties of Ziegler-Natta Bimodal High-Density Polyethylene  

Meng, Weijuan (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Li, Hongbo (Yanshan Branch, Beijing Research Institute of Chemical Industry, SINOPEC)
Li, Jianwei (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Chen, Biaohua (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Publication Information
Abstract
Bimodal high-density polyethylenes with different comonomer type and content were synthesized by polymerization of ethylene using Ziegler-Natta catalyst. Their structure and properties were studied using GPC, NMR, DSC and tensile test. It was found that ethylene/1-hexene copolymer exhibits higher tensile strength and elongation at break than that of ethylene/1-butylene copolymer with similar comonomer content. The molecular weight decreases as the comonomer content of the polymer increases. Short chain branching affects the crystallinity and thus the morphology and consequently the mechanical properties of the corresponding bimodal high-density polyethylenes. After SSA treated, the multiple endothermic peaks were observed. Multiple endothermic peaks are mainly attributed to the heterogeneity of ethylene sequence length and lamellar thickness. The difference of broadness index indicates that SCB distribution of polyethylene containing higher comonomer content has improved uniformity.
Keywords
Bimodal high-density polyethylene; Short chain branching; Structure; Mechanical Properties;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Quijada, R.; Dupont, J.; Miranda, M. S. L.; Galland, G. B. Macromol. Chem. Phys. 1995, 196, 3991.   DOI
2 Quijada, R.; Scipioni, R. B.; Mauler, R. S.; Galland, G. B.; Miranda, M. S. L. Polym. Bull. 1995, 35, 299.   DOI
3 Mauler, R. S.; Galland, G. B.; Scipioni, R. B.; Quijada, R. Polym. Bull. 1996, 37, 469.   DOI
4 Shan, C. L. P.; Soares, J. B. P.; Penlidis, A. Polymer 2002, 43, 767.   DOI
5 Kong, J.; Fan, X. D.; Xie, Y. C.; Qiao, W. Q. J. Appl. Polym. Sci. 2004, 94, 1710.   DOI
6 Starck, P. Polym. Int. 1996, 40, 111.   DOI
7 Arnal, M. L.; Balsamo, V.; Ronca, G.; Sanchez, A.; Muller, A. J.; Canizales, E.; Urbina De Navarro, C. J. Therm. Anal. Calorim. 2000, 59, 451.   DOI
8 Darras, O.; Seguela, R. Polymer 1993, 34, 2946.   DOI
9 Zhang, F. J.; Liu, J. P.; Fu, Q.; Huang, H. Y.; Hu, Z. H. J.; Yao, S. H.; Cai, X. Y.; He, T. B. J. Polym. Sci. Polym. Phys. 2002, 40, 813.   DOI
10 Keating, M.; Lee, I. H.; Wong, C. S. Thermochim. Acta 1996, 284, 47.   DOI
11 Song, S. J.; Feng, J. C.; Wu, P. Y.; Yang, Y. L.; Qiao, J. L. Chinese Polym. Bull. 2008, 3, 15.
12 Keating, M.; McCord, E. E. Thermochim. Acta 1994, 243, 129.   DOI
13 Marzena, B.; Krystyna, C.; Beata, S. M. Thermochim. Acta. 2005, 429, 149.   DOI
14 Bruni, C.; Pracella, M.; Masi, F.; Menconi, F.; Ciardelli, F. Polym. Int. 1994, 33, 279.   DOI
15 Gabriel, C.; Lilge, D. Polymer 2001, 42, 297.   DOI
16 Simanke, A. G.; Galland, G. B.; Baumhardt, N. R.; Quijada, R.; Mauler, R. S. J. Appl. Polym. Sci. 1999, 74, 1194.   DOI
17 Pankaj, G.; Garth, L.W.; Ashish, M. S.; Rajendra, K. K.; Mark, J. L.; Stephen, M. W.; Chung, C. T.; Paul, J. D. Polymer 2005, 46, 8819.   DOI
18 Minick, J.; Moet, A.; Hiltner, A.; Baer, E.; Chum, S. P. J. Appl. Polym. Sci. 1995, 58, 1371.   DOI
19 Glotin, M.; Mandelkern, L. Colloid Polym. Sci. 1982, 260, 182.   DOI