• Title/Summary/Keyword: ethanol resistance

Search Result 169, Processing Time 0.021 seconds

Beakdugu-tang, Traditional Korean Digestant Medicine, Inhibits Hepatic Steatosis in Insulin Resistance Cell Model with HepG2 and THP-1

  • Kim, Hyuck;Lim, Dong-Woo;Park, Sung Yun;Park, Sun-Dong;Park, Won-Hwan;Kim, Jai-Eun
    • The Journal of Korean Medicine
    • /
    • v.38 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • Objectives: Beakdugu-tang (BDGT) consists of three medicinal herbs, and this prescription has long been used in treatment of various digestant problem in Korea. In this study, we designed to clarify mechanisms by which Korean traditional digestive medicine, BDGT, may exert anti-hepatic steatosis effects via improved insulin resistance cell model in human hepatocellular carcinoma (HepG2) and monocyte (THP-1). Materials and methods: The preparation of BDGT and constituents were extracted with 70% ethanol. HepG2 and THP-1 were treated with different concentrations of BDGT and constituents in the presence and absence of stimulants such as free fatty acids (FFAs) and oxidized low-density lipoprotein (ox-LDL), respectively. Results: The BDGT and its constituents inhibited the FFAs-stimulated lipid accumulation in HepG2 cells. Ethanol extracts of Amomum cardamomum (ACE) improved the ox-LDL induced insulin resistance in THP-1 cells. Also, treatment of monocytic cells with ACE increased anti-hepatic steatosis related gene levels including ABCA, ABCG and SR-B1. Conclusion: The results suggest that the ethanol extract of BDGT and its constituents potently inhibit the FFAs- and ox-LDL induced liver steatosis via improved insulin resistance.

irrE, an Exogenous Gene from Deinococcus radiodurans, Improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain Under Ethanol and Acid Stresses

  • Zhang, Ying;Ma, Ruiqiang;Zhao, Zhonglin;Zhou, Zhengfu;Lu, Wei;Zhang, Wei;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1156-1162
    • /
    • 2010
  • During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE, acting as a global regulator, confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shocks. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stresses. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

Electrochemical Oxidation of Ethanol at Nickel Hydroxide Electrodes in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim, Jae-Woo;Park, Su-Moon
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 2005
  • Electrochemical oxidation of ethanol at nickel electrodes has been studied in 1 M KOH solution containing 0.20M ethanol using electrochemical impedance spectroscopy. Equivalent circuits have been worked out by simulating the impedance data, and the results were used to model the oxidation of ethanol as well as the passivation of the electrode. The maximum rate of oxidation of $Ni(OH)_2$ to NiOOH was observed at about 0.37V vs. Ag/AgCl reference electrode, while the maximum rate of ethanol oxidation at the Ni electrode was observed at about 0.42V, The charge-transfer resistance for oxidation of the electrode itself became smaller in the presence of ethanol than in its absence. These results suggest that the $\beta-Ni(OH)_2/\beta-NiOOH$ redox couple is acting as an effective electron transfer mediator far ethanol oxidation. The kinetic parameters also were obtained by the experimental and simulated results.

Screening and Characteristics of Ethanol Tolerant Strain Saccharomyces cerevisiae SE211 (Ethanol내성 효모 Saccharomyces cerevisiae SE211의 분리 및 특성)

  • 서민재;유상렬
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.216-222
    • /
    • 2002
  • To Produce the modified Cheongiu that has high ethanol content, an ethanol-tolerant strain Saccharo-myces cerevislae SE2l1 was screened from Saccharomyces cerevisiae Kyokai No. 10 strain. The isolate showed faster growth than in the medium containing 10% ethanol compared with original strain. The isolate produced a higher concentration of ethanol and showed higher resistance to ethanol, high osmolarity and heat than the original strain. The analyses of yeast membrane components indicated that there were no significant changes in composition of sterols and phospholipids between the isolated and the original strain. However, during the fermentation, the iso-lated strain could change the fatty acid composition in the membrane more rapidly in the direction of decreasing membrane unsaturation and accumulate more trehalose in the cell than the original strain. These data suggest that the ability to change its membrane fatty acid composition and to accumulate trehalose may make the isolated strain easily adapt to changes in external condition.

The Fabrication of Gas Sensors using MWCNTs (다중벽 카본 나노 튜브를 이용한 가스센서의 제작)

  • Jang, Kyung-Uk;Kim, Myung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1089-1094
    • /
    • 2009
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as resistive gas sensors for ethanol ($C_2H_5OH$) detection. Sensor films were fabricated by air spray method for the multi-walled CNTs solution on glass substrates. Sensors were characterized by resistance measurements in the sensing system, in order to find the optimum detection properties for the ethanol gas molecular. The film that was sprayed with the MWCNT dispersion for 60 see, was 300 nm thick. And the electric resistivity is $2{\times}10^{-2}\;{\Omega\cdot}cm$. Also, the sensitivity and the linearity of MWVNT sensor for ethanol gas are 0.389 %/sec and 17.541 %/FS, respectively. The MWCNT film was excellent in the response for the ethanol gas molecules and its reaction speed was very fast, which could be using as ethanol gas sensor. The conductance of the fabricated sensors decreases when the sensors are exposed to ethanol gas.

Inhibition of Vibrio parahaemolyticus by Ethanol in Tryptic Soy Broth and Some Fish Homogenates (Tryptic Soy Broth와 생선 Homogenate에 첨가한 Ethanol이 Vibrio parahaemolyticus의 증식과 생존에 미치는 영향)

  • 박찬성
    • Korean journal of food and cookery science
    • /
    • v.12 no.1
    • /
    • pp.6-12
    • /
    • 1996
  • The survival and growth of Vibrio parahaemolyticus in tryptic soy broth(TSB), flounder homogenate and oyster homogenate with 0 or 5% of ethanol was tested at -20, 5, 35, 45 and 50$^{\circ}C$. Growth pattern of V. parahaemolyticus was similar in TSB and flounder homogenate but slightly poor in oyster homogenate at 35$^{\circ}C$. Growth occured at 5% ethanol, in TSB and flounder homogenate after a prolonged lag period but decreased in oyster homogenate during incubation at 35$^{\circ}C$. TSB and fish homogenates containing 0 or 5% of ethanol were inoculated with 10$\^$6/-10$\^$7/ cells/ml of V. parahaemolyticus and cold or heat resistance of the cells were determined at -20, 5, 45 and 50$^{\circ}C$. At 5$^{\circ}C$, the viability in culture broth with 5% of ethanol or without ethanol was not vary with the culture broth. In the presence of 5% of ethanol at -20$^{\circ}C$, cells of V. parahaemolyticus in flounder homogenate and oyster homogenate were more significantly inhibited than in TSB. The D-valves for V. parahaemolyticu at 45 and 50$^{\circ}C$ was significantly lower in oyster homogenate than in TSB and flounder homogenate with 5% of ethanol or without ethanol. The D-values in each culture broth without ethanol were 1.9-3.5 times of that value in each culture broth containing 5% of ethanol at 45 and 50$^{\circ}C$.

  • PDF

Rapid detection of beer-spoilage lactic acid bacteria: Modified hop-gradient agar with ethanol method

  • Hong, Lim Seok;Kim, Ji Hyeon;Kim, Wang June
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.296-303
    • /
    • 2020
  • Hop-resistant lactic acid bacteria (LAB) are well-known, major beer-spoilage bacteria. The hop-gradient agar containing ethanol (c-HGA+E) method has been used to examine hop-resistance of beer-spoilage LAB. However, the selection of beer-spoilage bacteria by the c-HGA+E method is either too selective or too inclusive. Furthermore, it is accompanied by a complicated experimental procedure, high-cost and time. To overcome these disadvantages, the modified hop-gradient agar with ethanol (m-HGA+E) method was developed. The most remarkable modifications were the shape of the petri dish and the inoculation method for bacteria. The efficiency and validation of the m-HGA+E approach were proven by the formation of colonies at different hop concentrations in the bottom layer, co-culture with the bacteriocin producer and by PCR detection of hop-resistant genes. This study demonstrated that m-HGA+E is a rapid, economical, and easy method to monitor potential hop-resistant beer-spoilage LAB during the beer brewing process.

High-Sensitivity Microstrip Patch Sensor Antenna for Detecting Concentration of Ethanol-Water Solution in Microliter Volume (마이크로리터 부피의 에탄올 수용액 농도 검출을 위한 고감도 마이크로스트립 패치 센서 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.510-515
    • /
    • 2022
  • In this paper, a microstrip patch sensor antenna (MPSA) for detecting the concentration of an ethanol-water solution in a microliter volume is proposed. A rectangular slot was added at the radiating edge of the patch to increase the sensitivity to the relative permittivity change. To improve a low input resistance caused by placing an ethanol-water solution, which is a polar liquid with high dielectric constant and high loss tangent, on the patch, a quarter-wave impedance transformer was added between the 50-ohm feedline and the patch, and the MPSA was fabricated on a 0.76 mm-thick RF-35 substrate. A cylindrical container was made of acryl, and 15 microliters of the ethanol-water solution was tested from 0% to 100% of ethanol concentration at 20% intervals. Experiment results show that the resonant frequency increased from 1.947 GHz to 2.509 GHz when the ethanol concentration of the ethanol-water solution was increased from 0% to 100%, demonstrating the performance as a concentration detecting sensor.

A Study on the Evaluation of Pressure Resistance and Effective Thermal Conductivity of Thin Heat Pipes Using Polymer Compound Sheets for Bonding Metal Thin Plates (금속박판 접합용 고분자화합물시트를 이용한 박형 히트파이프 내압성 및 유효열전도율 평가에 관한 연구)

  • Yu, Byeong-Seok;Kim, Jeong-Hun;Kim, Dong-Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, a pressure vessel for a heat pipe was fabricated by bonding a metal thin film using a polymer compound sheet. In order to confirm the applicability of the experimentally manufactured copper material thin heat pipe of 0.6 mm or less, the pressure resistance and effective thermal conductivity for pressure generated according to the type of the working fluid of the heat pipe were evaluated to suggest the commercialization potential of the thin heat pipe. As a result of evaluating the pressure resistance and effective thermal conductivity performance of the thin heat pipe, the following conclusions were drawn. 1) Using a PEEK-based polymer compound sheet, it was possible to fabricate a pressure vessel for a thin heat pipe with a pressure resistance of up to 1.0 MPa by bonding a copper thin film, and the possibility of commercialization was confirmed at a temperature below 120 ℃. 2) In the case of the effective thermal conductivity performance evaluation test, the effective thermal conductivity of ethanol was higher than that of FC72 and Novec7000, and in the case of ethanol, the maximum effective thermal conductivity was 2,851 W/mK at 3.0 W of heating.

A Study on the Development of Cosmeceutical Ingredient, Rhododendron mucronulatum, and the Application of Rheology Properties (진달래꽃(Rhododendron mucronulatum Turczaninow)을 이용한 화장품 소재 개발 및 물성에 관한 연구)

  • An, Bong-Jeun;Lee, Jin-Tae;Lee, Chang-Eon;Son, Jun-Ho;Lee, Jin-Young;Park, Tae-Soon
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.273-279
    • /
    • 2005
  • To develop cosmetics using Jindalae flowers (Rhododendron mucronulatum), the surface tensions of extracts were measured and the properties and stability of cream with extracts were investigated. The surface tension of 0.1% ethanol extract was 30.42 mN/m and that of distilled water was 72.2 mN/m. The surface tension of cream with 0.1% ethanol extract was similar to that of sample cream and the measured pH were weakly alkalic. The surface tension of 1% ethanol extract was the lowest value of 24.98 mN/m, the measured pH of cream with 1% ethanol extract was weakly acidic and the particle size of cream was stable. According to an oscillatory test, linear viscoelastic region was extended by adding of 1% water extract and 1% ethanol extract to cream, indicating that the cream had greater enhanced resistance for preserving inner structure as compared to outside stress. Besides, as a result of the diminished loss angle of ethanol extract cream, the elasticity of cream was increased more than that of sample cream and cream with 0.1% ethanol extract. In contrast, in the case of the increased loss angle of water extract cream, the viscosity of cream was increased. In conclusion, Rhododendron mucronulatum can be deliberated as a cosmetic material because 0.1% water and ethanol extracts showed efficacious physiological activities and cream with 1% extracts could extend linear viscoelastic region.