Screening and Characteristics of Ethanol Tolerant Strain Saccharomyces cerevisiae SE211

Ethanol내성 효모 Saccharomyces cerevisiae SE211의 분리 및 특성

  • Published : 2002.09.01

Abstract

To Produce the modified Cheongiu that has high ethanol content, an ethanol-tolerant strain Saccharo-myces cerevislae SE2l1 was screened from Saccharomyces cerevisiae Kyokai No. 10 strain. The isolate showed faster growth than in the medium containing 10% ethanol compared with original strain. The isolate produced a higher concentration of ethanol and showed higher resistance to ethanol, high osmolarity and heat than the original strain. The analyses of yeast membrane components indicated that there were no significant changes in composition of sterols and phospholipids between the isolated and the original strain. However, during the fermentation, the iso-lated strain could change the fatty acid composition in the membrane more rapidly in the direction of decreasing membrane unsaturation and accumulate more trehalose in the cell than the original strain. These data suggest that the ability to change its membrane fatty acid composition and to accumulate trehalose may make the isolated strain easily adapt to changes in external condition.

고농도의 ethanol을 갖는 청주를 생산하기 위하여 일본양조협회 Saccharomyces cerevisiae 10호 균주로부터 ethanol 내성 균주 Saccharemyces cerevisiae SE211균주를 분리하였다. 분리 균주는 10%(v/v) ethanol이 포함되어 있는 배지에서의 성장속도가 빨랐으며, 높은 ethanol 농도에서도 성장이 가능하였다 또한 ethanol내성, 내삼투압성, 내열성 등이 원균주에 비해 우수하였다. 선발균주의 세포막 성분을 분석한 결과 sterol, phospholipid의 함량은 원균주와 차이가 없었으나, 지방산의 조성비는 차이를 보였다 또한 분리균주는 외부자극에 대한 저항성을 나타내는 물질로 알려진 세포내 trehalose의 함량이 원균주에 비해 증가하였다 따라서 선발균주의 ethanol내성 및 ethanol배지에서의 높은 성장속도는 세포막의 fatty acid및 세포내 trehalose함량을 변화시키는 능력이 높은 것에 기인한다고 생각되었다.

Keywords

References

  1. Hakkokogaku v.68 Breeding of highly ethanol-tolerant sake yeasts selected by isoamyl alcohol tolerance Akita,O.;T.Watanabe;T.Hasuo;T.Obata;S.Hara
  2. FEMS Microbiol. Lett. v.124 Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloechera apiculata Alexandre, H.;I. Bousseaux;C. Charpentier https://doi.org/10.1111/j.1574-6968.1994.tb07255.x
  3. J. Gen. Microbiol. v.77 Osmotic lysis of sphaeroplasts from Saccharomyces cerevisiae grown anaerobically in media containing different unsaturated fatty acid Alterthum,F.;A.H.Rose https://doi.org/10.1099/00221287-77-2-371
  4. Yeast v.11 The Effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat Arneborg, N.;C. Hoy;O. B. Jorgensen https://doi.org/10.1002/yea.320111006
  5. J. Appl. Microbiol. v.86 Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae Chi,Z.;N.Arneborg https://doi.org/10.1046/j.1365-2672.1999.00793.x
  6. J. Ind. Microbiol. Biotechnol. v.24 Saccharomyces cerevisiae strains with different degrees of ethanol tolerance exhibit different adaptive responses to produced ethanol Chi,Z.;N.Arneborg https://doi.org/10.1038/sj.jim.2900769
  7. J. Ind. Microbiol. Biotechnol. v.22 Role of phophatidylinositol (PI) in ethanol production and ethanol tolerance by a high ethanol producing yeast Chi,Z.;S.D.Kohlwein;F.Pltauf https://doi.org/10.1038/sj.jim.2900603
  8. J. Bacteriol. v.127 Fragility of plasma membranes sterols Hossack, J. A.;A. H. Rose
  9. Yeast v.3 Ethanol and the fluidity of the yeast plasma membrane Jones,R.P.;P.F.Greenfield https://doi.org/10.1002/yea.320030403
  10. J. Gen. Microbiol. v.136 Effect of ethanol on the phospholipid and fatty acid content of Schizosaccharomyces pombe membranes Koukou, A. I.;D. Tsoukatos;C. Drainas https://doi.org/10.1099/00221287-136-7-1271
  11. Appl. Environ. Microbiol. v.39 Relationship between the sterol content of yeast cells and their fermentation activity in grape must Larue,F.;S.Lafon-Lafourcade;P.Ribereau-Gayon
  12. Yeast v.9 Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae Lloyd, D.;S. Morrell;H. N. Calsen;H. Degn;P. E. James;C. C. Rowlands https://doi.org/10.1002/yea.320090803
  13. Appl. Env. Microbiol. v.66 Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae Lucero,P.;E.Penalver;E.Moreno;R.Lagunas https://doi.org/10.1128/AEM.66.10.4456-4461.2000
  14. Appl. Microbiol. Biotechnol. v.34 Mini-review; Lipids as modulators of ethanol tolerance in yeast Mishra, P.;S. Kaur
  15. J. Gen. Microbiol. v.34 Role of phospholipid head groups in ethanol tolerance of Saccharomyces cerevisiae Mishra,P.;R.Prasad
  16. J. Ferment. Bioeng. v.83 Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance Morimura,S.;Z.Y.Ling;K.Kida https://doi.org/10.1016/S0922-338X(97)80991-9
  17. World J. Microbiol. Biotechnol. v.10 Quantification of trehalose in biological samples with a condial trehalose from the thermophilic fungus Humicola grisea var. thermoidea Neves, M. J. https://doi.org/10.1007/BF00357555
  18. Seibutsu-kogaku v.78 Breeding of ethanol tolerant sake yeasts from K1 killer-resistant mutants Nitta,A.;H.Uchiyama;T.Imamura
  19. Biotechnol. Lett. v.16 Sterol dependent growth and ethanol tolerance of a sterol-auxotrophic erg9: HIS3 mutant of Saccharomyces cerevisiae Novotny,C.;F.Karst https://doi.org/10.1007/BF01023340
  20. J. Biosci. Bioeng. v.90 Tolerance mechanism of the ethanol-tolerant mutant of sake yeast Ogawa, Y.;A. Nitta;H. Uchiyama;T. Imamura;H. Shimoi;K. Ito https://doi.org/10.1016/S1389-1723(00)80087-0
  21. Ferment. Bioeng. v.85 Ethanol tolerance of thermotolerant yeasts cultivated on mixtures of sucrose and ethanol Peres,M.F.S.;C.Laluce https://doi.org/10.1016/S0922-338X(98)80082-2
  22. FEMS Microbiol. Lett. v.134 The heat shock and ethanol stress responses of yeast exhibit extensive simulariy and functional overlap Piper, P. W. https://doi.org/10.1111/j.1574-6968.1995.tb07925.x
  23. Ph. D. thesis. Seoul National University Improvement of Sake manufacturing process using gelatinized rice flour and Saccharomyces cerevisiae SE211 Seo,M.J.
  24. Appl. Biochem. Biotechnol. v.56 Salt-induced changes in lipid composition and ethanol tolerance in Saccharomyces cerevisiae Sharma, S. C.;D. Raj;M. Forouzandeh;M. P. Bansal https://doi.org/10.1007/BF02786949
  25. Microbiology v.140 Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically Steels,E.L.;R.P.Learmonth;K.Watson https://doi.org/10.1099/00221287-140-3-569
  26. Can. J. Microbiol. v.43 Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast Swan,T.M.;K.Watson https://doi.org/10.1139/m97-010
  27. Arch. Microbiol. v.117 Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae Thomas, D. S.;J. A. Hossack;A. H. Rose https://doi.org/10.1007/BF00738541
  28. J. Brew. Soc. Japan v.83 Breeding of shochu yeasts having high producibilites of flavor and ethanol at high temperature by protoplast fusion Watanabe,S.;K.Kitamoto;K.Takahasi;K.Yoshizawa https://doi.org/10.6013/jbrewsocjapan1988.83.757
  29. J. Ferment. Technol. v.49 Studies on the metabolism of Saccharomyces sake Yamashiro, K.;H. Nishihara;Y. Tani;S. Fujui
  30. J. Brew. Soc. Japan v.91 Effects of alcohol concentration in the medium on fatty acid composition of sake yeast membranes Yoshizawa,K.;H.K.Ohshima;T.K.Kakuta