• 제목/요약/키워드: ethanol gas

검색결과 354건 처리시간 0.026초

NiO의 첨가에 따른 α-Fe2O3 나노입자 센서의 에탄올 가스 검출 특성 향상 (Improved Ethanol Gas Sensing Performance of α-Fe2O3 Nanoparticles by the Addition of NiO Nanoparticles)

  • 박성훈;강우승
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.69-74
    • /
    • 2016
  • In order to investigate the effect of NiO on the ethanol gas sensing performance of ${\alpha}-Fe_2O_3$ nanoparticles, NiO and ${\alpha}-Fe_2O_3$ nanoparticles are synthesized by hydrothermal method. The sensor with ${\alpha}-Fe_2O_3$ and NiO nanoparticles mixed at an optimum ratio of 7:3 showed 3.8 times improved sensing performance for 200ppm ethanol gas at $200^{\circ}C$. The enhanced gas sensing performance can be considered to be caused by pn heterojunction at the grain boundaries of ${\alpha}-Fe_2O_3$ and NiO nanopartcles.

다공질규소를 이용한 MOPS 구조의 에탄올 감지 특성 (The sensing characteristics of MOPS structure based on porous silicon for ethanol gas)

  • 손신영;김한중;이기원;김영유
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.457-461
    • /
    • 2006
  • To use the porous silicon as gas sensors, we made the MOPS structure from the porous silicon with Al evaporation and investigated the sensing characteristic of ethanol. When the MOPS structure is in contact with ethanol gas, the maximum peak of PL changes and it return to original intensity without contact. The MOPS structure had response time 0.78s and recovery time 4.13s when it is in contact with ethanol, which satisfied the required sensor standards. Further complimentary researches, however, are required to investigate the contact mechanism between MOPS structure and ethanol and to solve the surface contamination problem.

Au 나노입자가 코팅된 TiO2 나노와이어의 에탄올가스 검출 특성 (Ethanol Sensing Properties of TiO2 Nanowires Sensor Decorated with Au Nanoparticles)

  • 강우승
    • 한국표면공학회지
    • /
    • 제48권5호
    • /
    • pp.238-244
    • /
    • 2015
  • $TiO_2$ nanowires were synthesized by hydrothermal method for the application to ethanol gas sensor. $TiO_2$ nanowires were decorated with Au nanoparticles to improve the sensitivity to ethanol gas. Scanning electron microscopy and Transmission electron microscopy revealed that the synthesized nanowires had diameters and lengths of approximately 100 - 200 nm and a few micrometers, respectively. Size of the Au nanoparticles decorated on the $TiO_2$ nanowires was observed to be in the range of 10 - 20 nm. X-ray diffraction confirmed that the decorated nanowires were composed of anatase-, rutile-$TiO_2$, and Au. The sensitivities of $TiO_2$ nanowires sensors decorated with Au were approximately 1.1 - 3.65 times as high as those of as-synthesized $TiO_2$ sensors for the ethanol concentration of 5 - 100 ppm at $200^{\circ}C$. The mechanism of the improved ethanol gas sensing of the $TiO_2$ nanowires decorated with Au nanoparticles is discussed.

산화아연 나노튜브의 벽 두께에 따른 에탄올 가스 검출특성 (The Effect of Wall Thickness of ZnO Nanotubes on the Ethanol Gas Sensing Performance)

  • 강우승
    • 한국표면공학회지
    • /
    • 제50권3호
    • /
    • pp.225-229
    • /
    • 2017
  • ZnO nanotubes were synthesized to investigate the effect of wall thickness on the ethanol gas sensing performance. The wall thickness of the nanotubes was varied from approximately 20 to 60 nm. Transmission electron microscopy, X-ray diffraction and SAED (Selected Area Electron Beam Diffraction) analyses showed that the synthesized nanotubes were polycrystalline structured ZnO with the diameter of approximately 200-300nm. The ZnO nanotubes sensor with an optimum wall thickness of 51.8nm showed approximately 8 times higher response, compared to that with 21.14nm wall thick nanotubes, to the ethanol concentration of 500 ppm at the temperature of $300^{\circ}C$. The wall thickness of 51.8nm was found to be a little larger than 46nm, which was theoretically derived Debye length. Along with the study of the wall thickness effect on the performance of the sensors, the mechanisms of gas sensing of the polycrystalline ZnO nanotubes are also discussed.

막가스센서에 의한 에탄올 농도의 온라인 측정 (An On-Line Measurement of Ethanol Concentration by Membrane Gas Sensor)

  • 김형찬;박민선
    • KSBB Journal
    • /
    • 제10권2호
    • /
    • pp.126-130
    • /
    • 1995
  • 초산발효 중 에탄올 농도를 On-line으로 측정하기 위해 막가스 센서를 개발하였다. 에탄올이 함유된 발효액은 실리콘막을 통해 투과되고 Carrier gas로 사용된 Synthetic air에 의해 운반되어 반도체형 가 스센서에 감지되도록 설계하였다. 이 때 실리콘막의 두께가 O.5mm이고 Carrier gas의 유속이 20ml/mim이었을 때 막가스 센서의 감도가 가장 높았다. 막가스센셔의 저항치는 측정하고자 하는 에탄올 농 도에 따라 변하였고 이 저항치는 전위차로 변환되어 출력되었다. 제작된 막가스센서의 Calibration CUf ve를 작성하였고 실제로 조업 중인 초산 발효조의 발효액 중 에단올 농도의 On-line 측정이 가능하였 으며 이를 Gas chromatography에 의한 분석치와 비교한 결과 에단올 농도가 $0∼70g/\ell$의 범위에서 서로 상관관계를 나타내어 이러한 막가스센서가 초산발효와 같은 여러 생물공정의 모니터링과 제어에 이용이 가능함을 확인하였다.

  • PDF

입사광량의 조절과 이에 따른 비분산 적외선 알코올 센서의 온도 특성과 보정 (Temperature Compensation and Characteristics of Non-dispersive Infrared Alcohol Sensor According to the Intensity of Light)

  • 김진호;조희찬;이승환
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.47-54
    • /
    • 2018
  • In this paper, we describe the thermal characteristics of the output voltages of ethanol gas sensor according to the amount of radiation incident on the infrared sensors located at each focal point of two elliptical waveguides. In order to verify the output characteristics of the gas sensor according to the amount of incident light on the infrared sensor, two combinations of sensor modules were fabricated. Hydrophobic thin film is deposited on one of the reflectors of sensor modules and one of the two infrared sensors was equipped with a hollow disk (10 Ø), and the temperature characteristics of the infrared sensor equipped with the hollow disk (10 Ø) and the infrared sensor without the disk were tested. The temperature was varied from 253 K to 333 K at 10 K intervals based on 298 K. The properties of ethanol gas sensor have been identified with respect to varying temperature for a range of ethanol concentration from 0 ppm to 500 ppm. In the case of an infrared sensor equipped with a hollow disk (10 Ø), the output voltage of the sensor decreased by 0.8 mV and 1 mV, respectively, as the temperature increased. Conversely, the output voltage of the diskless infrared sensor showed an average increase of 67 mV and 57 mV as the temperature increased. The ethanol concentrations estimated on the basis of results show an error of more than 10 % for less than 100 ppm concentration. However, if the ethanol concentration exceeds 100 ppm, the gas concentration can be estimated within the range of ${\pm}10%$.

가솔린 엔진(3.8L)에서 바이오에탄올 혼합연료의 성능 및 배출특성에 관한 연구 (A Study on Engine Performance and Exhaust Emission Characteristics of Gasoline Engine using Bio-ethanol Blended Fuel)

  • 이치우
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.131-137
    • /
    • 2012
  • This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.

Impedance를 이용한 전도성고분자 센서의 에탄올 가스 감응특성 (Ethanol Gas Sensing Characteristics of Conducting Polymer Sensor Using Impedance)

  • 이경문;유준부;전희권;이병수;이덕동;허증수
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.155-159
    • /
    • 2003
  • The polypyrrole and polyaniline thin film sensors which were made by chemical polymerization were employed to detect ethanol gas. With a single sensor element we can obtain characteristic patterns of behaviour across a very wide frequency range when measuring either resistance or capacitance. Impedance spectroscopy was employed to study the gas sensing behavior of both capacitance and resistance based sensors with conducting polymer as the active sensing element.

Co3O4 나노입자가 코팅된 In2O3 나노와이어의 에탄올 가스 검출 특성 (Ethanol Gas Sensing Properties of In2O3 Nanowires Coated with Co3O4 Nanoparticles)

  • 박성훈;강우승
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.75-80
    • /
    • 2016
  • $In_2O_3$ nanowires were coated with $Co_3O_4$ nanoparticles to investigate the improvement of ethanol gas sensing performance compared with as-synthesized $In_2O_3$ nanowires. Scanning electron microscopy showed that the nanowires synthesized by VLS mechanism had diameters and lengths of approximately 50-100 nm and a few micrometers, respectively. $Co_3O_4$ nanoparticles produced by hydrothermal method was in the size range of a few to a few tens nm. As-synthesized and $Co_3O_4$ nanoparticles coated $In_2O_3$ nanowires sensors exhibited responses of 1.96% and 4.57%, respectively for the ethanol gas concentration of 200 ppm at $200^{\circ}C$. The underlying mechanism for the improved responses of $Co_3O_4$ nanoparticles coated $In_2O_3$ nanowires sensors is discussed.

온벽 펄스 레이저 증착법을 이용해 합성한 Ga 도핑된 산화아연계 나노선 에탄올 가스 센서의 특성 (Sensing Characteristics of ZnO-based Ethanol Gas Sensor on Ga-doped Nanowires by Hot Walled Pulsed Laser Deposition)

  • 정다운;김경원;이득희;;김상식;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.594-598
    • /
    • 2011
  • We have investigated the sensing properties of ethanol gas sensor with pure ZnO and Ga-doped ZnO nanowires on Au coated (0001) sapphire substrates grown by hot walled pulsed laser deposition. Randomly aligned ZnO nanowires arrays were grown on a Au-electrode patterned under ambient conditions. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The average of length and diameter of the ZnO nanowires were $8\;{\mu}m$ and 100 nm respectively, and confirmed by field emission scanning electron microscopy. Sensitivity chanege characterization of the gas sensor was found that measured sensitivities of the ethanol gas sensors were 83.3% and 68.3% at $300^{\circ}C$ respectively.