Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.7.594

Sensing Characteristics of ZnO-based Ethanol Gas Sensor on Ga-doped Nanowires by Hot Walled Pulsed Laser Deposition  

Jung, Da-Woon (Korea Institute of Science and Technology)
Kim, Kyoung-Won (Korea Institute of Science and Technology)
Lee, Deuk-Hee (Korea Institute of Science and Technology)
Debnath, Pulak Chandra (Korea Institute of Science and Technology)
Kim, Sang-Sig (Department of Electrical Engineering, Korea University)
Lee, Sang-Yeol (Korea Institute of Science and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.7, 2011 , pp. 594-598 More about this Journal
Abstract
We have investigated the sensing properties of ethanol gas sensor with pure ZnO and Ga-doped ZnO nanowires on Au coated (0001) sapphire substrates grown by hot walled pulsed laser deposition. Randomly aligned ZnO nanowires arrays were grown on a Au-electrode patterned under ambient conditions. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The average of length and diameter of the ZnO nanowires were $8\;{\mu}m$ and 100 nm respectively, and confirmed by field emission scanning electron microscopy. Sensitivity chanege characterization of the gas sensor was found that measured sensitivities of the ethanol gas sensors were 83.3% and 68.3% at $300^{\circ}C$ respectively.
Keywords
Hot walled pulsed laser deposition; ZnO; Ga-doped ZnO; Nanowire; Gas sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano. Lett., 667, 5 (2005).
2 M. C. McApline, H. Ahmad, D. Wang, and J. R. Heath, Nature Mater., 379, 6 (2007).
3 K. W. Kim, P. C. Debnath, S. S. Kim, and S. Y. Lee, Appl. Phys. Lett., 98, 113109 (2011).   DOI
4 K. S. Yoo, J. Kor. Sensor. Soc., 5, 5 (1996).
5 N. Yamazoe and K. Shimanoe, Sensor. Actuat., B138, 100 (2009).
6 K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 79, 7983 (1996).   DOI
7 A. Janotti and C. G. V. D. Walle, Appl. Phys. Lett., 87, 122102 (2005).   DOI
8 K. W. Kim, Y. W. Song, S. P. Chang, I. H. Kim, S. S. Kim, and S. Y. Lee, Thin Solid Films., 518, 1190 (2009).   DOI
9 L. Binet and D. Gourier, J. Phys. Chem. Solids., 59, 1241 (1998).   DOI
10 D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999).   DOI
11 G. H. Lu, L. E. Ocola, and J. Chen, Adv. Mater., 21, 2487 (2009).   DOI
12 P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. G. D. Arco, A. Badmaev, C. Wang, and C. Zhou, Adv. Mater., 22, 1900 (2010).   DOI   ScienceOn
13 Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Chengb, and S. Huang, Sensor. Actuat., B140, 549 (2009).
14 W. T. Lim, J. S. Wright, B. P. Gila, J. L. Johnson, A. Ural, T. Anderson, F. Ren, and S. J. Pearton, Appl. Phys. Lett., 93, 072109 (2008).   DOI
15 T. J. Hsueh and S. J. Chang, Appl. Phys. Lett., 91, 053111 (2007).   DOI
16 L. V. Thonga, N. D. Hoaa, D. T. T. Lea, D. T. Vieta, P. D. Tamb, A. T. Leb, and N. V. Hieua, Sensor. Actuat., B146, 361 (2010).