• Title/Summary/Keyword: etching solution.

Search Result 531, Processing Time 0.027 seconds

Surface Morphology and Optical Properties of Aluminosilicate Glass Manufactured by Physical and Chemical Etching Process (물리·화학적 혼합 식각 공정에 의해 제조된 알루미노실리케이트 유리의 표면 형상과 광학 특성)

  • Kim, Namhyuk;Sohn, Jeongil;Kim, Gwangsoo
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.501-506
    • /
    • 2017
  • Surface morphology and optical properties such as transmittance and haze effect of glass etched by physical and chemical etching processes were investigated. The physical etching process was carried out by pen type sandblasting process with $15{\sim}20{\mu}m$ dia. of $Al_2O_3$ media; the chemical etching process was conducted using HF-based mixed etchant. Sandblasting was performed in terms of variables such as the distance of 8 cm between the gun nozzle and the glass substrate, the fixed air pressure of 0.5bar, and the constant speed control of the specimen stage. The chemical etching process was conducted with mixed etching solution prepared by combination of BHF (Buffered Hydrofluoric Acid), HCl, and distilled water. The morphology of the glass surface after sandblasting process displayed sharp collision vestiges with nonuniform shapes that could initiate fractures. The haze values of the sandblasted glass were quantitatively acceptable. However, based on visual observation, the desirable Anti-Glare effect was not achieved. On the other hand, irregularly shaped and sharp vestiges transformed into enlarged and smooth micro-spherical craters with the subsequent chemical etching process. The curvature of the spherical crater increased distinctly by 60 minutes and decreased gradually with increasing etching time. Further, the spherical craters with reduced curvature were uniformly distributed over the etched glass surface. The haze value increased sharply up to 55 % and the transmittance decreased by 90 % at 60 minutes of etching time. The ideal haze value range of 3~7 % and transmittance value range of above 90 % were achieved in the period of 240 to 720 minutes of etching time for the selected concentration of the chemical etchant.

EFFECTS OF VARIOUS ETCHING TIMES ON DEPTH OF ETCH AND SHEAR BOND STRENGTH OF AN ORTHODONTIC RESIN TO BOVINE ENAMEL (부식시간이 소의 법랑질 부식깊이와 교정용 레진의 전단결합강도에 미치는 영향)

  • Kim, Jeong-Hoon;Lee, Ki-Soo;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.23 no.1 s.40
    • /
    • pp.75-88
    • /
    • 1993
  • Recent reports indicate that shorter etching times than 60 seconds can be adopted without affecting the bond strength and clinical disadvantages. The purpose of this in vitro study was to compare the shear bone strength and to measure depth of etch at different etching time length. One hundred and eight extracted bovine lower central incisors were embedded each in a tooth cup with cold-cure acrylic resin. The facial surfaces of the teeth were ground wet with 600-, 800-, 1000-, and 1200-grit Sic papers, and finally polished with a water slurry of extrafine silicon carbide powder, washed with tap water, and dried with hot air. Nine groups of nine prepared teeth were etched with a commercial($38\%$ phosphoric acid solution) for 0, 5, 10, 15, 20, 30, 60, 90, and 120 seconds, respectively, rinsed with tap water, and dried with hot air. One conditioned teeth from every group was selected randomly for the scanning electron microscopic examination, and the remaining eight teeth of the groups were used for measuring the push shear bond strength after bonding brackets and immensing them in the $36.5^{\circ}C$ water for 24 hours. Another nine groups of three teeth were used for measuring the depth of etch and surface roughness with a surface profilometer. after pieces of adhesive tape of 3mm inner diameter positioned on the ground enamel surfaces, and etched with the above mentioned. The data obtained form the above expeiments were analysed statistically with one way ANOVA and Dunkan's multiple range test with the $95\%$ confidence level. The results and conclusion of the study were as follows; 1. The results of shear bond strength for the given experimental etching times were not statistically different, but showed the tendency of decreasing shear bone strength after over 60 seconds etching times. 2. On the scanning election microscopic examination, it was observed that the morphological patterns of etched enamel surface for 5 to 20 seconds were similar and consitent, and those for 30 to 120 seconds showed increasing over-etched patterns depending on the length of etching times. 3. The depth of etch was increased almost proportionally by the length of etching times, but it was not associated with the shear bond strength. 4. The surface roughness increased depending on the length of etching times, but it was not associated with the shear bond strength. 5. This experiment indicated that proper etching time with $38\%$ phosphoric acid solution is in the range of 5 to 30 seconds.

  • PDF

Effect of Etching Treatment of SAPO-34 Catalyst on Dimethyl Ether to Olefins Reaction (DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과)

  • Song, Kang;Yoon, Young-Chan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2021
  • Effects of the etching treatment of SAPO-34 catalyst were investigated to improve the catalytic lifetime in DTO reaction. The aqueous NH3 solution was a more appropriate treatment agent which could control the degree of etching progress, compared to that of using a strong acid (HCl) or alkali (NaOH) solution. Therefore, the effect on characteristics and lifetime of SAPO-34 catalyst was observed using the treatment concentration and time of aqueous NH3 solution as variables. As the treatment concentration or time of aqueous NH3 solution increased, the growth of erosion was proceeded from the center of SAPO-34 crystal plane, and the acid site concentration and strength gradually decreased. Meanwhile, it was found that external surface area and mesopore volume of SAPO-34 catalyst increased at appropriate treatment conditions. When the treatment concentration and time were 0.05 M and 3 h, respectively, the lifetime of the treated SAPO-34 catalyst was the longest, and was significantly enhanced by ca. 36% (based on DME conversion of > 90%) compared to that of using the untreated catalyst. The model for the etching progress of SAPO-34 catalyst in a mild treatment process using aqueous NH3 solution was also proposed.

Formation of metal nano particles on optical fiber for fiber optic localized surface plasmon resonance sensor (광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금속 나노 입자 형성)

  • Lee, Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.95-99
    • /
    • 2008
  • Various etching methods of optical fiber and formation of metal nano particles on the optical fiber have been proposed for fabrication of fiber optic localized surface plasmon resonance (FO LSPR) biosensors. Different types of etched optical fiber are possible by removing the cladding of optical fiber using HF (hydrofluoric acid) solution and BHF (buffered hydrofluoric acid) solution, which results in improved surface roughness when BHF solution is used. Localized surface plasmon can be formed and measured by formation of silver and gold nano particles on the etched optical fiber. The characteristics of the etched optical fiber and metal nano particles on the etched surface of the optical fiber play a key role in dictating the sensitivity of the LSPR sensors, so that the proposed results can be expected to be applied for related research on fiber optic based biosensors.

The Saw Damage Etching Characteristics of Silicon Wafer for Solar Cell with Alkaline Solutions (염기용액을 이용한 태양전지용 실리콘 기판의 절삭손상층 식각 특성)

  • Kwon, Soon-Woo;Yi, Jong-Heop;Yoon, Se-Wang;Kim, Dong-Hwan
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • The surface etching characteristics of single crystalline silicon wafer were investigated using potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). The saw damage layer was removed after 10min by KOH 45wt% solution at $80^{\circ}C$. The wafer etched at high temperature ($90^{\circ}C$) and in low concentration (4wt%) of TMAH solution showed an increased etch rate of silicon wafer and wavy patterns on the surface. Especially, pyramidal textures were formed in 4wt% TMAH solution without alcohol additives.

  • PDF

Application of Electrochemical Etch-stop in TMAH/IPA/pyrazine Solution to Pressure Sensors (TMAH/IPA/pyrazine용액에 있어서 전기화학적 식각정지법의 압력센서에의 응용)

  • 박진성;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.423-426
    • /
    • 1998
  • Piezoresistive pressure sensors have fabricated using electrochemical etch-stop technique. Si diaphragm having thickness of n-epi. layer was fabricated and used to detect pressure range from 0 to 1 kg/$\textrm{cm}^2$. Piezoresistors were diffused 3${\times}$10$\^$18/ cm$\^$-3/ and placed at diaphragm edge for maximum pressure detection. The characteristics of electrochemical etch-stop in TMAH/lPA/pyrazine solution were also discussed. I-V curves of n and p-type Si in TMAH/lPA/pyrazine solution were obtained. Etching rate is highest at optimum etching condition, TMAH 25wt.%/IPA 17vo1.%/pyrazine 0.1/100m1, thus the elapsed time of etch-stop was reduced.

  • PDF

Reactive ion Etching Characterization of SiC Film Deposited by Thermal CVD Method for MEMS Application (MEMS 적용을 위한 Thermal CVD 방법에 의해 증착한 SiC막의 반응성 이온 Etching 특성 평가)

  • 최기용;최덕균;박지연;김태송
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2004
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of 100$0^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using SF$_{6}$/O$_2$ and CF$_4$/O$_2$ gas mixture. Etch rate has been investigated as a function of oxygen concentration in the gas mixture, rf power, working pressure and gas flow rate. Etch rate was measured by surface profiler and FE-SEM. SF$_{6}$/O$_2$ gas mixture showed higher etch rate than CF$_4$/O$_2$ gas mixture. Maximum etch rate appeared at RF Power of 450W. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observe

Reactive ion etching characterization of SiC film deposited by thermal CVD method for MEMS application (MEMS 적용을 위한 thermal CVD 방법에 의해 증착한 SiC막의 etching 특성 평가)

  • Choi, Gi-Yong;Choi, Duck-Kyun;Park, Ji-Yeon;Kim, Tae-Song
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.868-871
    • /
    • 2003
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability. Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of $1000^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using $SF_6/O_2$ and $CF_4/O_2$ gas mixture. Etch rate have been investigated as a function of oxygen concentration in the gas mixture, RF power, and working pressure. Etch rate was measured by surface profiler and FE-SEM. $SF_6/O_2$ gas mixture has been shown high etch rate than $CF_4/O_2$ gas mixture. Maximum etch rate appeared at 450W of RF power. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observed.

  • PDF

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.

Pattern Fabrication on Si (100) Surface by Using Both Nanoscratch and KOH Etching Technique (나노스크래치와 KOH 에칭 기술을 병용한 Si (100) 패턴제작)

  • 윤성원;이정우;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.448-451
    • /
    • 2003
  • This study describes a new maskless nano-fabrication technique of Si (100) using the combination of nanometer-scale mechanical forming by nano-indenter XP and KOH wet etching. First the surface of a Si (100) specimen was machined by using the nano-machining system, which utilizes the mechanism of the nano-indenter XP. Next, the specimen was etched by KOH solution. After the etching process, the convex structure or deeper hole is made because of masking or promotion effect of the affected layer generated by nano-machining. On the basis of this interesting fact, some sample structures were fabricated.

  • PDF