Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.9.501

Surface Morphology and Optical Properties of Aluminosilicate Glass Manufactured by Physical and Chemical Etching Process  

Kim, Namhyuk (Department of Materials Engineering, Soonchunhyang University)
Sohn, Jeongil (Department of Materials Engineering, Soonchunhyang University)
Kim, Gwangsoo (Department of Materials Engineering, Soonchunhyang University)
Publication Information
Korean Journal of Materials Research / v.27, no.9, 2017 , pp. 501-506 More about this Journal
Abstract
Surface morphology and optical properties such as transmittance and haze effect of glass etched by physical and chemical etching processes were investigated. The physical etching process was carried out by pen type sandblasting process with $15{\sim}20{\mu}m$ dia. of $Al_2O_3$ media; the chemical etching process was conducted using HF-based mixed etchant. Sandblasting was performed in terms of variables such as the distance of 8 cm between the gun nozzle and the glass substrate, the fixed air pressure of 0.5bar, and the constant speed control of the specimen stage. The chemical etching process was conducted with mixed etching solution prepared by combination of BHF (Buffered Hydrofluoric Acid), HCl, and distilled water. The morphology of the glass surface after sandblasting process displayed sharp collision vestiges with nonuniform shapes that could initiate fractures. The haze values of the sandblasted glass were quantitatively acceptable. However, based on visual observation, the desirable Anti-Glare effect was not achieved. On the other hand, irregularly shaped and sharp vestiges transformed into enlarged and smooth micro-spherical craters with the subsequent chemical etching process. The curvature of the spherical crater increased distinctly by 60 minutes and decreased gradually with increasing etching time. Further, the spherical craters with reduced curvature were uniformly distributed over the etched glass surface. The haze value increased sharply up to 55 % and the transmittance decreased by 90 % at 60 minutes of etching time. The ideal haze value range of 3~7 % and transmittance value range of above 90 % were achieved in the period of 240 to 720 minutes of etching time for the selected concentration of the chemical etchant.
Keywords
anti-glare; aluminosilicate glass; etching; haze; transmittance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. Adjouadi, N. Laouar, C. Bousbaa, N. Bouaouadja and G. Fantozzi. EU. Ceram. Soc., 27, 3221 (2007).   DOI
2 N. Bouaouadja, S. Bouzid, M.Hamidouche, C. Bousbaa and M. Madjoubi. Appl. Eng., 65, 99 (2000).   DOI
3 J. K. Hwa and J. S. Kim, Korean J. Met. Mater., 54, 49 (in Korean).
4 Y. Shin. Thesis, Kangwon National University, Korea, (2016) (in Korean).
5 M. Kolli, M. Hamidouche, N. Bouaouadja and G. Fantozzi, EU. Ceram. Soc., 29, 2697 (2009).   DOI
6 D. S. Park, D. K. Kang, J. K. Kim, E. J. Seong and J. Y. Han, J. Korean Soc. Mach. Tool. Eng., 15, 10 (2006) (in Korean).
7 Result from meetings of mobile device company 'S' and camera window manufacturer 'U' (2015).
8 L. Wong, T. Suratwala, M. D. Feit, P. E. Miller and R. A. Steele, J. Non-Cryst. Soilds, 355, 797 (2008).
9 J. S. Judge, J. Electrochem. Soc., 118, 1772 (1971).   DOI
10 Y. Saito, S. Okamoto, H. Inomata, J. Kurach, T. Hidaka and H. Kasai, Thin Solid Films, 517, 2900 (2009).   DOI
11 C. Iliescu, J. Jing, F. E. H. Tay, J. Miao and T. Sun, Surf. Coat. Tech., 198, 314 (2005).   DOI
12 T. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr and L. Wong, J. Am. Ceram. Soc., 94, 416 (2011).   DOI
13 J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot and O. Rondeau, Optic Express, 17, 20448 (2009).   DOI
14 H. W. Ahn, J. H. Oh, S. G. Kweon and S. D. Choi, J. Korean Soc. Manuf. Process. Eng., 13, 145 (2014) (in Korean).
15 S. H. Lee, H. E. Song, G. H Kang, H. K. Ahn and D. Y. Han, Korean Inst. Electr. Eng., 62, 76 (2013) (in Korean).
16 K. S. Kim, G. H. Kang and G. J. Yu. J, Korean Sol. Energ. Soc., 28, 8 (2008) (in Korean).
17 D. Y. Kong, D. H. Kim, S. H. Yun, Y. H. Bae, I. S. Yu, C. S. Cho and J. H. Lee, J. Korean Vac. Soc., 20, 233 (2011) (in Korean).   DOI
18 K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi and A. Fujishima, Langmuir, 27, 3275 (2011).   DOI
19 H. R. Lee, D. J. Kim and K. H. Lee, Surf. Coat. Technol., 142, 468 (2001).
20 D. S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. B. Park, G. Irvin and P. Drzaic, J. Soc. Information Display, 17, 941 (2009).   DOI
21 N. Yamaguchi, K. Tadanaga, A. Matsuda, T. Minami and M. Tatsumisago, Surf. Coat. Technol., 201, 3653 (2006).   DOI
22 B. G. Kum, Y. C. Park, Y. J. Chang, J. Y. Jeon and H. M. Jang, Thin Solid Films, 519, 3778 (2011).   DOI
23 B. Louis, N. Krins, M. Faustini and D. Grosso, J. Phys. Chem. C, 115, 3115 (2011).   DOI
24 Y. M. Lee, S. H. Nam and J. H. Boo, Appl. Sci. Conv. Tech., 24, 289 (2015) (in Korean).
25 S. S. Kim, J. S. Hwang and B. J. Jeon, Korean Inst. Electr. Mater. Eng., 28, 607 (2015) (in Korean).   DOI