• 제목/요약/키워드: etchant

검색결과 226건 처리시간 0.029초

케미컬 밀링을 이용한 실린더 설계 (Design of cylinder using chemical milling)

  • 이종웅;유준태;장영순;이영무;조광래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.504-509
    • /
    • 2004
  • Chemical machining(CHM) is a special process which material removed by contact of strong etchant. The application as industrial process was started from aircraft industry after 2nd world war. Chemical milling, one of the CHM process, initially became commercial bussiness and it was called chem-mill. Even today, this process widely used to remove the material from aircraft wings and fuselage panel in aircraft industry. In this study, it is attempted to design the cylinder pattern which minimize the weight within the allowable stress using chemical milling.

  • PDF

레이저를 이용한 미세에칭에 관한 연구 (A Study on the Argon Laser Assisted Thermochemical Micro Etching)

  • 박준민;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF

레이저유도 에칭을 이용한 고세장비 마이크로채널 가공 및 응용 (Fabrication and application of high-aspect-ratio microchannels using laser-induced etching)

  • 오광환;이민규;김수근;임현택;정성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.659-660
    • /
    • 2006
  • High-aspect-ratio(max. 12.5) microchannels with excellent surface quality and good shape uniformity have been realized utilizing laser-induced etching technique. Etch width and depth variations depend largely upon process variables such as laser power and etchant concentration. Etchant concentration in association with viscosity also influence on the cross-sectional profile of the channels. The optimum process conditions for the fabrication of high-aspect-ratio microchannels applicable to micro thermal devices are demonstrated.

  • PDF

인산을 적용한 Ultra Definition 디스플레이 패널의 패턴 형성에 관한 연구 (A Study on Pattern Formation of Ultra Definition Display Panel Applying Phosphoric Acid)

  • 김민수;조을룡
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.13-19
    • /
    • 2014
  • Phosphoric acid was used as etching agent instead of conventional peroxide - based chemicals for forming pattern of ultra definition display. Etchant was synthesized by mixing etching agent, oxidation agent, buffer solution, and additive into solvent, deionized water. Thicknesses of copper, main metal of ultra definition display, for etching, were 10,000 and $30,000{{\AA}}$. Etch stop of good low skew for proper pattern formation has been occurred at the content ratio of phosphoric acid 60 - 64%, nitric acid 4 - 5%, additive(potassium acetate) 1 - 3%. Buffer solution(acetic acid) decreased the metal contact angle $63.07^{\circ}$ to $42.49^{\circ}$ for benefiting pattern formation. Content variations on four components (phosphoric acid, nitric acid, acetic acid, potassium acetic acid) of the etchant with storage time were within 3 wt% after 24 hrs of etching work.

고밀도 광기록을 위한 GeSbTe 박막의 Wet-Etching 특성연구 (Wet-Etching Characteristics of Inorganic GeSbTe Films for High Density Optical Data Storage)

  • 김진홍;김선희;이준석
    • 정보저장시스템학회논문집
    • /
    • 제2권3호
    • /
    • pp.196-200
    • /
    • 2006
  • We are developing a phase change etching technology using an inorganic photoresist of GeSbTe film which is the recording material of the phase change disc. A selective etching phenomenon between amorphous and crystalline states can be utilized with an alkaline etchant. Phase-change pits could be formed using this technique, in which the etching selectivity is strongly dependent on the concentration of the etchant. The degree of etching was investigated by the transmittance between crystalline and amorphous films after the wet-etching. The pits patterned on the disc could be observed by AFM after wet-etching.

  • PDF

Etching and Polishing Behavior of Cu thin film according to the additive chemicals

  • Ryu, Ju-Suk;Eom, Dae-Hong;Hong, Yi-Koan;Park, Jum-Yong;Park, Jin-Goo
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.274-278
    • /
    • 2002
  • The purpose of this study was to characterize the reaction of Cu surface with Cu slurry and CMP performance as a function of additives in CMP slurry. The polish rate of Cu was dependent on the kind of organic acids added in slurry. It was considered that polish rate of Cu was dependent on the concentration of carboxylates and mean particle size. When the etchant and oxidant were added in slurry, the highest removal rate and lower etch rate were measured at neutral pH. The addition of etchant, oxidant and pH adjustor played key roles of CMP ability in slurry. As the pH increased, polish rate of Cu was increased by the enhanced the mechanical effects due to effective dispersion of slurry particles. Alumina abrasives was more desirable for 1st step slurry because of high removal rate of Cu and high selectivity ratio among TaN and Cu.

  • PDF

실리콘 에피층 성장과 실리콘 에칭기술을 이용한 Bare Chip Burn-In 테스트용 인터컨넥션 시스템의 제조공정 (Fabrication Processes of Interconnection Systems for Bare Chip Burn-In Tests Using Epitaxial Layer Growth and Etching Techniques of Silicon)

  • 권오경;김준배
    • 한국표면공학회지
    • /
    • 제28권3호
    • /
    • pp.174-181
    • /
    • 1995
  • Multilayered silicon cantilever beams as interconnection systems for bare chip burn-in socket applications have been designed, fabricated and characterized. Fabrication processes of the beam are employing standard semiconductor processes such as thin film processes and epitaxial layer growth and silicon wet etching techniques. We investigated silicon etch rate in 1-3-10 etchant as functions of doping concentration, surface mechanical stress and crystal defects. The experimental results indicate that silicon etch rate in 1-3-10 etchant is strong functions of doping concentration and crystal defect density rather than surface mechanical stress. We suggested the new fabrication processes of multilayered silicon cantilever beams.

  • PDF

PCB 제조공정을 위한 화학약품 용액의 실시간 모니터링 시스템 (Real-time Chemical Monitoring System using RGB Sensor toward PCB Manufacturing)

  • 안종환;이석준;김이철;홍상진
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.397-401
    • /
    • 2008
  • Most of the topic in PCB industry was about increasing the volume of product for the development of electronics in numerous industrial application area. However, it has been emerged that yield improvement quality manufacturing via detecting any suspicious process in order to minimize the scrapped product and material waste. In addition, recently, restriction of hazardous substances (RoHS) claims that electronic manufacturing environment should reduce the harmful chemicals usage, thus the importance of monitoring copper etchant and detecting any mis-processing is crucial for electronics manufacturing. In this paper, we have developed real-time chemical monitoring system using RGB sensor, which is simpler but more accurate method than commercially utilized oxidation reduction potential (ORP) technique. The developed Cu etchant monitoring system can further be utilized for copper interconnect process in future nano-semiconductor process.

반도체 플라즈마 에칭 상부 전극의 표면 품질 형성에 관한 가공법 평가 (Evaluation of the Machining Method on the Formation of Surface Quality of Upper Electrode for Semiconductor Plasma Etch Process)

  • 이은영;김문기
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.1-5
    • /
    • 2019
  • This study has been focused on properties of surface technology for large diameter upper electrode using in high density plasma process as like semi-conductor manufacturing process. The experimental studies have been carried out to get mirror surface for upper electrode. For a formation of high surface quality upper electrode, single crystal silicon upper electrode has been mechanical and chemical machining worked. Mechanical machining work of the upper electrode is carried out with varying mesh type using diamond wheel. In case of chemical machining work, upper electrode surface roughness was observed to be strongly dependent upon the etchant. The different surface roughness characteristics were observed according to etchant. The machining result of the surface roughness and surface morphology have been analyzed by use of surface roughness tester, laser microscope and ICP-MS.