• Title/Summary/Keyword: etchant

Search Result 226, Processing Time 0.023 seconds

Removal of Metallic Cobalt Layers by Reactive Cold Plasma

  • Kim, Yong-Soo;Jeon, Sang-Hwan;Yim, Byung-Joo;Lee, Hyo-Cheol;Jung, Jong-Heon;Kim, Kye-Nam
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.32-42
    • /
    • 2004
  • Recently, plasma surface-cleaning or surface-etching techniques have been focused in respect of the decontamination of spent or used nuclear parts and equipment. In this study the removal rate of metallic cobalt surface is experimentally investigated via its surface etching rate with a $CF_4-o_2$mixed gas plasma. Experimental results reveal that a mixed etchant gas with about 80% $CF_4$-20% $O_2$ (molar) gives the highest reaction rate and the rate reaches 0.06 ${\mu}m$/min at $380^{\circ}C$ and ion-assisted etching dramatically enhances the surface reaction rate. With a negative 300 V DC bias voltage applied to the substrate, the surface reaction initiation temperature lowers and the rate increases about 20 times at $350^{\circ}C$ and up to 0.43 ${\mu}m$/min at $380^{\circ}C$, respectively. Surface morphology analysis confirms the etching rate measurements. Auger spectrum analysis clearly shows the adsorption of fluorine atoms on the reacted surface. From the current experimental findings and the results discussed in previous studies, mechanistic understanding of the surface reaction, fluorination and/or fluoro-carbonylation reaction, is provided.

  • PDF

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates

  • Sharma, Sanjeev;Chun, Sang-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.387-393
    • /
    • 2019
  • Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.

A Study on the Radiation Characteristics of Concave Optical Fiber Tips (오목한 광섬유 팁의 방사특성에 관한 연구)

  • Son, Gyeong-Ho;Yu, Kyoung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.731-736
    • /
    • 2017
  • In this paper, we report the fabrication of concave surface fiber tips for optical resonators. It was confirmed that the radius of curvature on fiber end can be controlled by introducing the hydrofluoric acid solution and the wavelength of $1.55{\mu}m$ laser which is absorbed well in the etchant to induce the photothermal effect. Using the microscope images, we observed the proposed concave fiber tip fabrication method is effective to make the controllable concave tips. We also observed changes in the size of the beam emitted from the tips with the various radius of curvature using the beam profiler. The authors believe that the proposed method will be applied to resonators for optical communications.

Enhancement of Analyte Ionization in Desoprtion/Ionization on Porous Silicon (DIOS)-Mass Spectrometry(MS)

  • Lee Chang-Soo;Kim Eun-Mi;Lee Sang-Ho;KIm Min-Soo;Kim Yong-Kweon;Kim Byug-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.212-217
    • /
    • 2005
  • Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a relatively new laser desorption/ionization technique for mass spectrometry without employing an organic matrix. This present study was carried to survey the experimental factors to improve the efficiency of DIOS-MS through electrochemical etching condition in structure and morphological properties of the porous silicon. The porous structure of silicon structure and its properties are crucial for the better performance of DIOS-MS and they can be controlled by the suitable selection of electrochemical conditions. The fabrication of porous silicon and ion signals on DIOS-MS were examined as a function of silicon orientation, etching time, etchant, current flux, irradiation, pore size, and pore depth. We have also examined the effect of pre- and post-etching conditions for their effect on DIOS-MS. Finally, we could optimize the electrochemical conditions for the efficient performance of DIOS-MS in the analysis of small molecule such as amino acid, drug and peptides without any unknown noise or fragmentation.

Electrochemical Etch-stop Characteristics of TMAH:IPA:Pyrazine Solutions (TMAH/IPA/Pyrazine용액에 있어서 전기화학적 식각정지 특성)

  • Chung, Gwiy-Sang;Lee, Chae-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.147-151
    • /
    • 2000
  • This paper presents the electrochemical etch-stop characteristics of single-crystal silicon in a tetramethyl ammonium hyciroxide(TMAH):isopropyl alcohol(IPA):pyrazine solution. Addition of pyrazine to a TMAH:IPA etchant increases the etch-rate of (100) silicon, thus the elapsed time for etch-stop was shortened. The current-voltage(I-V) characteristics of n- and p-type silicon in a TMAH:IPA:pyrazine solution were obtained, respectively. Open circuit potential(OCP) and passivation potential(PP) of n- and p-type silicon, respectively, were obtained and applied potential was selected between n- and p-type silicon PP. The electrochemical etch-stop is applied to the fabrication of 801 microdiaphragms having $20\;{\mu}m$ thickness on a 5-inch silicon wafer. The averge thicknesses of 801 microdiaphragms fabricated on the one wafer were $20.03\;{\mu}m$ and standard deviation was ${\pm}0.26{\mu}m$. The silicon surface of the etch-stopped microdiaphragm was extremely flat without noticeable taper or other nonuniformities. The benefits of the electrochemical etch-stop in a TMAH:IPA:pyrazine solution become apparent when reproducibility in the microdiaphragm thickness for mass production is considered. These results indicate that the electrochemical etch-stop in a TMAH:IPA:pyrazine solution provides a powerful and versatile alternative process for fabricating high-yield silicon microdiaphragms.

  • PDF

The Characteristics of Silicon Oxide Thin Film by Atomic Layer Deposition (원자층 증착 방법에 의한 silicon oxide 박막 특성에 관한 연구)

  • 이주현;박종욱;한창희;나사균;김운중;이원준
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.107-107
    • /
    • 2003
  • 원자층 증착(ALD, Atomic Layer Deposition)기술은 기판 표면에서의 self-limiting reaction을 통해 매우 얇은 박막을 형성할 수 있고, 두께 및 조성 제어를 정확히 할 수 있으며, 복잡한 형상의 기판에서도 100%에 가까운 step coverage를 얻을 수 있어 초미세패턴의 형성과 매우 얇은 두께에서 균일한 물리적, 전기적 특성이 요구되는 초미세 반도체 공정에 적합하다. 특히 반도체의 logic 및 memory 소자의 gate 공정에서 절연막과 보호막으로, 그리고 배선공정에서는 층간절연막(ILD, Inter Layer Dielectric)으로 사용하는 silicon oxide 박막에 적용될 경우, LPCVD 방법에 비해 낮은 온도에서 증착이 가능해 boron과 같은 dopant들의 확산을 최소화하여 transistor 특성 향상이 가능하며, PECVD 방법에 비해 전기적·물리적 특성이 월등히 우수하고 대면적 uniformity 증가가 기대된다. 본 연구에서는 자체적으로 설계 및 제작한 장비를 이용하여 silicon oxide 박막을 ALD 방법으로 증착하고 그 특성을 살펴보았다. 먼저, cycle 수에 따른 증착 박막 두께의 linearity를 통해서 원자층 증착(ALD)임을 확인할 수 있었으며, reactant exposure(L)와 증착 온도에 따른 deposition rate 변화를 알아보았다 Elipsometer를 이용해 증착된 silicon oxide 박막의 두께 및 굴절률과 그 uniformity를 관찰하였고, AES 및 XPS 분석 장비로 박막의 조성비와 불순물 성분을 살펴보았으며, 증착 박막의 치밀성 평가를 위해 HF etchant로 wet etch rate를 측정하여 물리적 특성을 정리하였다. 특히, 기존의 박막 증착 방법인 LPCVD와 PECVD에 의한 silicon oxide박막의 물성과 비교, 평가해 보았다. 나아가 적절한 촉매 물질을 선정하여 원자층 증착(ALD) 공정에 적용하여 그 효과도 살펴보았다.

  • PDF

Modeling of Silicon Etch in KOH for MEMS Based Energy Harvester Fabrication (MEMS기반 에너지 하베스터 제작을 위한 실리콘 KOH 식각 모형화)

  • Min, Chul-Hong;Gang, Gyeong-Woo;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.176-181
    • /
    • 2012
  • Due to the high etch rate and low fabrication cost, the wet etching of silicon using KOH etchant is widely used in MEMS fabrication area. However, anisotropic etch characteristic obstruct intuitional mask design and compensation structures are required for mask design level. Therefore, the accurate modeling for various types of silicon surface is essential for fabrication of three-dimensional MEMS structure. In this paper, we modeled KOH etch profile for MEMS based energy harvester using fuzzy logic. Modeling results are compared with experimental results and it is applied to design of compensation structure for MEMS based energy harvester. Through Fuzzy inference approaches, developed model showed good agreement with the experimental results with limited etch rate information.

A Printing Process Combining Screen Printing with Reverse Off-set for a Fine Patterning of Electrodes on Large Area Substrate (스크린 인쇄와 리버스 오프셋 인쇄를 혼합한 대면적 미세 전극용 인쇄공정)

  • Park, Ji-Eun;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.374-380
    • /
    • 2011
  • In this paper a printing process for patterning electrodes on large area substrate was developed by combining screen printing with reverse off-set printing. Ag ink was uniformly coated by screen printing. And then etching resist (ER) was patterned in the Ag film by reverse off-set printing, and then the non-desired Ag film was etched off by etchant. Finally, the ER was stripped-off to obtain the final Ag patterns. We extracted the suitable conditions of reverse Using the process we successfully fabricated gate electrodes and scan bus lines of OTFT-backplane used for e-paper, in which the diagonal size was 6 inch, the resolution $320{\times}240$, the minimum line width 30 um, and sheet resistance 1 ${\Omega}/{\Box}$.

A Novel KOH Wet Etching Technique for Ultrafine Nanostructure Formation (초정밀 나노구조물 형성을 위한 새로운 KOH 습식각 기술)

  • Kang, Chan-Min;Park, Jung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.156-161
    • /
    • 2011
  • The present study introduces a novel wet etching technique for nanostructure fabrications which usually requires low surface roughness. Using the current method, acquired profiles were smooth even in the nanoscale, which cannot be easily achieved with conventional wet or dry etching methods. As one of the most popular single crystal silicon etchant, potassium hydroxide (KOH) solution was used as a base solvent and two additives, antimony trioxide (Sb2O3) and ethyl alcohol were employed in. Four experimental parameters, concentrations of KOH, Sb2O3, and ethyl alcohol and temperature were optimized at 60 wt.%, 0.003 wt.%, 10 v/v%, and $23^{\circ}C$, respectively. Effects of additives in KOH solution were investigated on the profiles in both (110) and (111) planes of single crystal silicon wafer. The preliminary results show that additives play a critical role to decrease etch rate significantly down to ~2 nm/min resulting in smooth side wall profiles on (111) plane and enhanced surface roughness.

Effects of Nozzle Locations on the Rarefied Gas Flows and Al Etch Rate in a Plasma Etcher (플라즈마 식각장치내 노즐의 위치에 따른 희박기체유동 및 알루미늄 식각률의 변화에 관한 연구)

  • 황영규;허중식
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1406-1418
    • /
    • 2002
  • The direct simulation Monte Carlo(DSMC) method is employed to calculate the etch rate on Al wafer. The etchant is assumed to be Cl$_2$. The etching process of an Al wafer in a helicon plasma etcher is examined by simulating molecular collisions of reactant and product. The flow field inside a plasma etch reactor is also simulated by the DSMC method fur a chlorine feed gas flow. The surface reaction on the Al wafer is simply modelled by one-step reaction: 3C1$_2$+2Allongrightarrow1 2AIC1$_3$. The gas flow inside the reactor is compared for six different nozzle locations. It is found that the flow field inside the reactor is affected by the nozzle locations. The Cl$_2$ number density on the wafer decreases as the nozzle location moves toward the side of the reactor. Also, the present numerical results show that the nozzle location 1, which is at the top of the reactor chamber, produces a higher etch rate.