Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00059

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates  

Sharma, Sanjeev (Duracell)
Chun, Sang-Eun (School of Materials Sciences and Engineering, Kyungpook National University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.4, 2019 , pp. 387-393 More about this Journal
Abstract
Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.
Keywords
Carbohydrate; Activated Carbon; Porous Carbon; Hydrothermal Carbonization; NaOH Activation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.F. Group. Activated Carbon: US Industry Study with Forecasts for 2020 & 2025, Freedonia, 2006.
2 Eco-Business, https://www.eco-business.com/press-releases/us-demand-for-activated-carbon-to-approach-13-billionpounds-in-2017, 2013.
3 F. Beguin, E. Frackowiak. Carbons for Electrochemical Energy Storage and Conversion Systems, Taylor & Francis, 2009.
4 J. Reungoat, B.I. Escher, M. Macova, F.X. Argaud, W. Gernjak, J. Keller. Water Res. 2012, 46(3), 863-872.   DOI
5 T. Otowa, Y. Nojima, T. Miyazaki. Carbon. 1997, 35(9), 1315-1319.   DOI
6 B. Jurado-Sanchez, S. Sattayasamitsathit, W. Gao, L. Santos, Y. Fedorak, V.V. Singh, et al. Small. 2015, 11(4), 499-506.   DOI
7 A.E. Aksoylu, M. Madalena, A. Freitas, M.F.R. Pereira, J.L. Figueiredo. Carbon. 2001, 39(2), 175-185.   DOI
8 H. Juntgen. Fuel. 1986, 65(10), 1436-1446.   DOI
9 P. Simon, Y. Gogotsi. Nat. Mater. 2008, 7(11), 845-854.   DOI
10 H. Marsh, D.S. Yan, T.M. O'Grady, A. Wennerberg. Carbon. 1984, 22(6), 603-611.   DOI
11 M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, et al. Nature. 2005, 438(7065), 178-178.   DOI
12 C.E. Byrne, D.C. Nagle. Carbon. 1997, 35(2), 259-266.   DOI
13 L.R. Radovic. Chemistry and Physics of Carbon, Vol. 29. New York, CRC Press, 2007.
14 S.-E. Chun, Y.N. Picard, J.F. Whitacre. J. Electrochem. Soc. 2011, 158(2), A83-A92.   DOI
15 S.-E. Chun, J.F. Whitacre. Electrochim. Acta. 2012, 60, 392-400.   DOI
16 A. Burke. J. Power Sources. 2000, 91(1), 37-50.   DOI
17 A.J. Bard, R. Parsons, J. Jordan. Standard Potentials in Aqueous Solution, Taylor & Francis, 1985.
18 P.-C. Hsu, H.-T. Chang. Chem. Commun. 2012, 48(33), 3984-3986.   DOI
19 B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici. Advanced Materials. 2010, 22(7), 813-828.   DOI
20 E.P. Barrett, L.G. Joyner, P.P. Halenda. Journal of the American Chemical Society. 1951, 73(1), 373-380.   DOI
21 S.-E. Chun, J.F. Whitacre. J. Power Sources. 2013, 240, 306-313.   DOI
22 L.L. Zhang, X.S. Zhao. Chem. Soc. Rev. 2009, 38(9), 2520-2531.   DOI
23 E. Lam, J.H.T. Luong. ACS Catalysis. 2014, 4(10), 3393-3410.   DOI
24 S.R. Sandeman, C.A. Howell, G.J. Phillips, A.W. Lloyd, J.G. Davies, S.V. Mikhalovsky, et al. Biomaterials. 2005, 26(34), 7124-7131.   DOI
25 Y. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, et al. Angew. Chem. Int. Ed. 2010, 49(43), 7987-7991.   DOI
26 M. Lu, F. Beguin, E. Frackowiak. Supercapacitors:Materials, Systems and Applications, Wiley, 2013.
27 H. Marsh, F. Rodriguez-Reinoso. Activated Carbon, Elsevier, 2006.
28 M.-M. Titirici, M. Antonietti. Chem. Soc. Rev. 2010, 39(1), 103-116.   DOI
29 K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, et al. Pure Appl. Chem. 1985, 57(4), 603-619.   DOI
30 S. Brunauer, P.H. Emmett, E. Teller. Journal of the American Chemical Society. 1938, 60(2), 309-319.   DOI
31 L.R. Radovic. Chemistry and Physics of Carbon, Vol. 30. New York, CRC Press, 2007.
32 K. Kinoshita. Carbon: Electrochemical and physicochemical properties. New York, John Wiley and Sons, 1988.