• Title/Summary/Keyword: estrogen receptor-$\alpha$

Search Result 143, Processing Time 0.022 seconds

$17{\beta}$-estradiol Represses White Adipose Tissue Metabolism by Inhibiting $PPAR{\gamma}$ in High Fat Diet-induced Obese Female Ovariectomized Mice

  • Yoon, Mi-Chung;Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2009
  • This study investigated whether increased adiposity is prevented by estrogen replacement in female ovariectomized (OVX) C57BL/6J mice, an animal model of human menopause and whether these metabolic changes reflect the inhibitory action of estrogen on peroxisome proliferator-activated receptor $\gamma$ ($PPAR{\gamma}$)-regulated gene expression. Treatment of $17{\beta}$-estradiol for the last one week of the experiment decreased high fat diet-induced body weight gain and white adipose tissue mass compared to OVX control mice. Histological analysis showed that administration of $17{\beta}$-estradiol to mice decreased the size of adipocytes in parametrial adipose tissue versus OVX control mice. In addition, $17{\beta}$-estradiol reduced the adipose expression of $PPAR{\gamma}$ as well as $PPAR{\gamma}$ target genes such as adipocyte fatty acid binding protein and tumor necrosis factor $\alpha$. These results suggest that $17{\beta}$-estradiol may inhibit adiposity through reducing the $PPAR{\gamma}$ activities in female OVX mice.

  • PDF

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

Histological Changes in the Accessory Reproductive Organs and Liver of Male Mice in Response to Short-term Treatment with an Estrogen Receptor Agonist (에스트로겐 수용체 촉진제의 단기 처리에 따른 수컷 생쥐 부속 생식기관 및 간의 조직학적인 변화)

  • Mo, Yun Jeong;Cho, Young Kuk;Cho, Hyun Wook
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1070-1077
    • /
    • 2014
  • In this study, the estrogen receptor agonist propyl pyrazole triol (PPT), which has high-affinity with the estrogen receptor alpha, was subcutaneously injected into adult male mice every 2 days for 8, 16 and 24 days, after which histological changes in accessory genital glands, including the prostate and seminal vesicle, and the liver were observed. The body and genital gland weights decreased in the PPT group relative to those of the control group. However, the liver weight was two times greater in the PPT group. The luminal area of the prostate and seminal vesicle organs was lower in the PPT group, and the epithelial cell height of the prostate was increased relative to that of the control. There were many secretory vacuoles in the supranuclear cytoplasm of epithelial cells in the seminal vesicles of the control group, but these were not observed in the PPT group. The short sinusoidal diameter of the liver was 147.0%, 198.7%, and 223.3% greater in the PPT group than in the control group after 8, 16, and 24 days of treatment, respectively. These results suggest that PPT administration affected the reproductive organs and the liver and that the histological changes increased in accordance with a rise in the concentration of PPT. Overall, the PPT treatment caused changes in the epithelial cell height and resulted in atrophy of the luminal area of the prostate, leading to altered fertility. The sinusoidal diameter of the liver dramatically increased in response to the administration of PPT, increasing the liver weight.

Differential Gene Expression in Estradiol-3-Benzoate-Treated Liver and Chemically- Induced Hepatocellular Carcinoma

  • KIM , SEYL;KANG, JIN-SEOK;JANG, DONG-DEUK;LEE, KOOK-KYUNG;KIM, SOON-AE;HAN, BEOM-SEOK;PARK, YOUNG-IN
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1286-1294
    • /
    • 2004
  • In a previous study by the current authors, hepatocellular carcinoma (HCC) was determined to be epidemiologically sex-dependent, and the incidence and multiplicity of HCC found to decrease in estradiol-3 benzoate (EB)-treated F344 rats. Therefore, to ascertain the anticancer mechanism of EB, a commercially available cDNA microarray, with a total of 14,815 cDNA rat gene clones, was used to determine the differentially expressed genes in nontreated livers, EB-treated livers, and diethynitrosolamine (DEN)-induced HCC. In the sequenced experiment, a total of 85 genes were differentially expressed at either two or more times the rate of the normal expression, where 33 genes were downregulated by EB, and 52 genes upregulated. Candidate genes were selected according to significant changes observed in the mRNA expression in the EB-treated livers compared with the nontreated livers, then these genes were filtered according to their different expression patterns in the DEN-induced tumors compared to the estrogen-treated livers. To confirm the microarray data, a real-time PCR analysis was performed for ten selected genes: the H-ras revertant protein 107 (H­rev107), insulin-like growth factor binding protein (lOFBP), parathyroid hormone receptor (PI'HR), SH3 domain binding protein (SH3BP), metallothionein, src-suppressed C-kinase substrate (SSeCK) gene, phosphodiesterase I, CD44, epithelial membrane protein 3 (EMP3), and estrogen receptor a (ERa). The SSeCK and phosphodiesterase I genes were both upregulated in the DEN-induced hepatocarcinomas, yet their possible carcinogenic functions remain unknown. Meanwhile, the other genes were downregulated, including the genes related to growth regulation (IOFBP, H-revI07, ER$\alpha$), adipogenesis inhibition (PTHR), and tumor suppression (metallothionein).

Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development

  • Yoo, Hee Min;Park, Jong Ho;Kim, Jae Yeon;Chung, Chin Ha
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.425-434
    • /
    • 2022
  • The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.

Effects of Dendropanax morbifera extracts on postmenopausal syndrome in ovariectomized rats (황칠추출분말이 난소적출 흰쥐의 여성 갱년기 증상에 미치는 영향)

  • Oh, Ga-hui;Oh, Sung-moon;Lee, Seung-sik;Kim, Ji-hyeon;Oh, Jueon;Park, Young-joon;Kim, Joo-eun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.361-368
    • /
    • 2019
  • The present study aimed to evaluate the effect of Dendropanax morbifera (DM) extract on postmenopausal syndrome and to develop DM extract as an alternative for hormonal therapy. The following seven groups of rats; normal control (sham), ovariectomized (OVX) control, Punica granatum (PG)-treated group (770 mg/kg), estradiol treated group (0.5 mg/kg), and three DM-treated groups (200, 500, 1000 mg/kg) were compared. Indicated compounds were administrated once a day for eight weeks. To evaluate the estrogenic effect of DM extract, western blot analysis was performed on the liver tissue to confirm the expression of estrogen receptor ($ER-{\alpha}$, $ER-{\beta}$). Our analysis showed that after DM administration, collagen cross-linked C-telopeptide (CTX) value decreased while $ER-{\alpha}$ protein expression increased in a dose-dependent manner through the MAPK/ERK pathway in OVX rats. These results suggest that Dendropanax morbifera exerts estrogenic effect by inducing estrogen receptor expression and activating MAPK/ERK pathway.

Evaluation of Endocrine Disrupting Chemicals-Complex Mixture in Diesel Exhaust Respirable Particulate Matter

  • Ryu, Byung-Tak;Jang, Hyoung-Seok;Kim, Yun-Hee;Kim, Soung-Ho;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.195-195
    • /
    • 2003
  • It is well known that diesel exhaust particulate matter contains mutagenic PAHs, such as benzo[${\alpha}$]pyrene, benz[${\alpha}$]anthracene, chrysene, etc. Therefore it is suspected that these chemicals act on estrogen receptor and reveal endocrine-disrupting effects. Recent attention has focused on causative chemicals of endocrine-disrupting effects. We examined the estrogenic activity of respirable diesel exhaust particulate matter derived from diesel powered vehicle. PM2.5 diesel exhaust of vehicle was collected using a high volume sampler equipped with a cascade impactor. Diesel exhaust samples were fractionated according to EPA methods. The presence of estrogenic and antiestrogenic chemicals in PM 2.5 diesel exhaust was determined using E-screen assay. To quantitatively assess the estrogenic and antiestrogenic activities in diesel exhaust particulate matter, estradiol equivalent concentration (bio-EEQ) was calculated by comparing the concentration response curve of the sample with those of the estrogen calibration curve. Weak estrogenic activities and strong antiestrogenic activities were detected in the crude extract and moderately polar fractions. Higher antiestrogenic potency was observed with higher EROD activities in aliphatic and aromatic compounds fraction. In conclusion, estrogenic/antiestrogenic-like activities were present in diesel exhaust particulate matter. However, the health consequences of this observation was unknown, the presence of these activities may contribute to and exacerbate adverse health effect evoked by diesel exhaust particulate matter.

  • PDF

Pregnancy Recognition Signaling for Establishment and Maintenance of Pregnancy

  • Bazer, Fuller W.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.365-369
    • /
    • 1999
  • Interferon tau (IFN$\tau$), the pregnancy recognition signal in ruminants, suppresses transcription of the estrogen receptor (ER) gene in the endometrial luminal (LE) and superficial glandular epithelium (sGE) to prevent oxytocin receptor (OTR) expression and pulsatile release of luteolytic prostaglandin $F_{2{\alpha}}$ (PGF), Interferon regulatory factors one (IRF-l) and two (IRF-2) are transcription factors induced by IFN$\tau$ that activate and silence gene expression, respectively. Available results suggest that IFN$\tau$ acts directly on LE and sGE during pregnancy to induce sequentially IRF-l and then IRF-2 gene expression to silence transcription of ER and OTR genes, block the luteolytic mechanism to maintenance a functional corpus luteum (CL) and, signal maternal recognition of pregnancy. The theory for maternal recognition of pregnancy in pigs is that the uterine endometrium of cyclic gilts secretes PGF in an endocrine direction, toward the uterine vasculature for transport to the CL to exert its luteolytic effect. However, in pregnant pigs, estrogens secreted by the conceptuses are responsible, perhaps in concert with effects of prolactin and calcium, for exocrine secretion of PGF into the uterine lumen where it is sequestered to exert biological effects and / or be metabolized to prevent luteolysis.

  • PDF

Treatment of BG-1 Ovarian Cancer Cells Expressing Estrogen Receptors with Lambda-cyhalothrin and Cypermethrin Caused a Partial Estrogenicity Via an Estrogen Receptor-dependent Pathway

  • Kim, Cho-Won;Go, Ryeo-Eun;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • v.31 no.4
    • /
    • pp.331-337
    • /
    • 2015
  • Synthetic pyrethroids (SPs) are the most common pesticides which are recently used for indoor pest control. The widespread use of SPs has resulted in the increased exposure to wild animals and humans. Recently, some SPs are suspected as endocrine disrupting chemicals (EDCs) and have been assessed for their potential estrogenicity by adopting various analyzing assays. In this study, we examined the estrogenic effects of lambda-cyhalothrin (LC) and cypermethrin (CP), the most commonly used pesticides in Korea, using BG-1 ovarian cancer cells expressing estrogen receptors (ERs). To evaluate the estrogenic activities of two SPs, LC and CP, we employed MTT assay and reverse-transcription polymerase chain reaction (RT-PCR) in LC or CP treated BG-1 ovarian cancer cells. In MTT assay, LC ($10^{-6}M$) and CP ($10^{-5}M$) significantly induced the growth of BG-1 cancer cells. LC or CP-induced cell growth was antagonized by addition of ICI 182,720 ($10^{-8}M$), an ER antagonist, suggesting that this effect appears to be mediated by an ER-dependent manner. Moreover, RT-PCR results showed that transcriptional level of cyclin D1, a cell cycle-regulating gene, was significantly up-regulated by LC and CP, while these effects were reversed by co-treatment of ICI 182,780. However, p21, a cyclin D-ckd-4 inhibitor gene, was not altered by LC or CP. Moreover, $ER{\alpha}$ expression was not significantly changed by LC and CP, while down-regulated by E2. Finally, in xenografted mouse model transplanted with human BG-1 ovarian cancer cells, E2 significantly increased the tumor volume compare to a negative control, but LC did not. Taken together, these results suggest that LC and CP may possess estrogenic potentials by stimulating the growth of BG-1 ovarian cancer cells via partially ER signaling pathway associated with cell cycle as did E2, but this estrogenic effect was not found in in vivo mouse model.

Behavior Alterations and Expression of Estrogen Receptors in Mice Exposed to Bisphenol A (미성숙 마우스에 Bisphenol A 노출시 신경내분비계에서 에스트로겐 수용체 발현 및 신경행동 변화)

  • Seoung Min Jae;Shin Im Cheol;Lee Yoot Mo;Son Dong Ju;Song Youn Sook;Jeon Kei Hyun;Kim Yun Bae;Lee Beum Jun;Kim Dae Joong;Yun Young Won;Kim Tae Seong;Han Soon Young;Song Suk Gil
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.251-261
    • /
    • 2004
  • A large number of chemical pollutants including phthalates, alkylphenolic compounds and organochlorine pesticides have the ability to disrupt endocrine function in animals, and alter cog-nitive function. Because hormone mediated events play an important role in central nervous system development and function, the changes in cognitive function seem to be mediated by the endocrine-like action of these chemicals. The present study therefore was designed to investigate effect of bisphenol A (BPA), an endocrine disrupting chemical on neuro-behavial patterns, and expression of estrogen receptors and tyrosine hydroxylase, a limiting enzyme of dopamine synthesis pathway. BPA was treated orally for 3 weeks into 3 week old mice, and then the neuro-behavial patterns (stereo-type behaviors such as jumping rearing and forepaw tremor, climbing behavior, tail flick, rotarod and locomotor activity), and the expression of estrogen receptors and tyrosine hydroxylase were deter-mined every 3 week for 9 weeks. During the treatment of BPA, the food uptake and body weight increase were not significantly changed. BPA resulted in the increased stereotype behaviors (jump-ing, rearing and forepaw tremor) 6 or 9 weeks after treatment. The time response to tail flick and locomotor activity were decreased by the treatment of BPA, whereas the time for rotarod was increased by the treatment of BPA. The expression of estrogen receptor alpha and beta was increased in the brain and pituitary gland. Maximum expression was found in the brain after 9 week of 100 mg/kg BPA treatment and in the pituitary gland after 6 week of 100 mg/kg BPA treatment. Tyrosine hydroxylase was increased in dose and time dependent manners in the brain but no change was found in the pituitary gland. The present data show that exposure of BPA in the young mice could alter expression of estrogen receptors and dopamine synthesis pathway, thereby modulate neuro-behavial patterns (increase of stereotype behaviors but decrease locomotor activity).