DOI QR코드

DOI QR Code

Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development

  • Yoo, Hee Min (School of Biological Sciences, Seoul National University) ;
  • Park, Jong Ho (School of Biological Sciences, Seoul National University) ;
  • Kim, Jae Yeon (School of Biological Sciences, Seoul National University) ;
  • Chung, Chin Ha (School of Biological Sciences, Seoul National University)
  • Received : 2022.02.22
  • Accepted : 2022.03.14
  • Published : 2022.06.30

Abstract

The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.

Keywords

Acknowledgement

We thank Dong-Young Noh for providing human breast cancer tissues. This work was supported by National Academy of Sciences, ROK and National Research Foundation of Korea (NRF-2005-084-C00025) to C.H.C. and by Korea Research Institute of Standards and Science ("Establishment of measurement standards for Chemistry and Radiation," KRISS-2022-GP2022-0003), the Ministry of Science and ICT (MSIT), National Research Foundation of Korea (NRF-2016M3A7B6908929, NRF-2019M3A9F3065868, and NRF-2021M3C1C3097638) to H.M.Y. This study was approved by the Seoul National University Hospital (SNUH) Institutional Review Board (IRB) (approval No. 1207-119-420).

References

  1. Colin, E., Daniel, J., Ziegler, A., Wakim, J., Scrivo, A., Haak, T.B., Khiati, S., Denomme, A., Amati-Bonneau, P., Charif, M., et al. (2016). Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy. Am. J. Hum. Genet. 99, 695-703. https://doi.org/10.1016/j.ajhg.2016.06.030
  2. Daniel, J. and Liebau, E. (2014). The ufm1 cascade. Cells 3, 627-638. https://doi.org/10.3390/cells3020627
  3. Eckert, R.L., Mullick, A., Rorke, E.A., and Katzenellenbogen, B.S. (1984). Estrogen receptor synthesis and turnover in MCF-7 breast cancer cells measured by a density shift technique. Endocrinology 114, 629-637. https://doi.org/10.1210/endo-114-2-629
  4. Gannavaram, S., Connelly, P.S., Daniels, M.P., Duncan, R., Salotra, P., and Nakhasi, H.L. (2012). Deletion of mitochodrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of beta-oxidation of fatty acid and blocks cell division in the amastigote stage. Mol. Microbiol. 86, 187-198. https://doi.org/10.1111/j.1365-2958.2012.08183.x
  5. Hamilton, E.M.C., Bertini, E., Kalaydjieva, L., Morar, B., Dojcakova, D., Liu, J., Vandeever, A., Curiel, J., Persoon, C.M., Diadato, D., et al. (2017). UFM1 founder mutation in the Roma population causes recessive variant of H-ABC. Neulorogy 89, 1821-1828.
  6. Heride, C., Urbe, S., and Clague, M.J. (2014). Ubiquitin code assembly and disassembly. Curr. Biol. 24, R215-R220.
  7. Hu, Z., Wang, X., Li, D., Cao, L., Cui, H., and Xu, G. (2021). UFBP1, a key component in ufmylation, enhances drug sensitivity by promoting proteasomal degradation of oxidative stress-response transcription factor Nrf2. Oncogene 40, 647-662. https://doi.org/10.1038/s41388-020-01551-1
  8. Jensen, E. (2012). A conversation with Elwood Jensen. Interview by David D. Moore. Annu. Rev. Physiol. 74, 1-11. https://doi.org/10.1146/annurev-physiol-020911-153327
  9. Jozwik, K.M. and Carroll, J.S. (2012). Pioneer factors in hormone-dependent cancers. Nat. Rev. Cancer 12, 381-385. https://doi.org/10.1038/nrc3263
  10. Kang, S.H., Kim, G.R., Seong, M., Baek, S.H., Seol, J.H., Bang, O.S., Ovaa, H., Tatsumi, K., Komatsu, M., Tanaka, K., et al. (2007). Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J. Biol. Chem. 282, 5256-5262. https://doi.org/10.1074/jbc.M610590200
  11. Komatsu, M., Chiba, T., Tatsumi, K., Iemura, S., Tanida, I., Okazaki, N., Ueno, T., Kominami, E., Natsume, T., and Tanaka, K. (2004). A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23, 1977-1986. https://doi.org/10.1038/sj.emboj.7600205
  12. Kuiper, G.G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J.A. (1996). Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. U. S. A. 93, 5925-5930. https://doi.org/10.1073/pnas.93.12.5925
  13. Le Romancer, M., Poulard, C., Cohen, P., Sentis, S., Renoir, J., and Corbo, L. (2011). Cracking the estrogen receptor's posttranslational code in breast tumors. Endocr. Rev. 32, 597-622. https://doi.org/10.1210/er.2010-0016
  14. Lemaire, K., Moura, R.F., Granvik, M., Igoillo-Esteve, M., Hohmeier, H.E., Hendrickx, N., Newgard, C.B., Waelkens, E., Cnop, M., and Schuit, F. (2011). Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS One 6, e18517. https://doi.org/10.1371/journal.pone.0018517
  15. Lin, J., Xie, X., Weng, X., Qiu, S., Yoon, C., Lian, N., Xie, J., Wang, J., Lu, J., Chen, Q., et al. (2019). UFM1 suppressed invasive activities of gastric cancer cells by attenuating the expression of PDK1 through PI3K/AKT signaling. J. Exp. Clin. Cancer Res. 38, 410. https://doi.org/10.1186/s13046-019-1416-4
  16. Liu, J., Guan, D., Dong, M., Yang, J., Wei, H., Liang, Q., Song, J., Xu, L., Bai, J., Liu, C., et al. (2020). UFMylation maintains tumor suppressor p53 stability by antagonizing its ubiquitination. Nat. Cell Biol. 22, 1056-1063. https://doi.org/10.1038/s41556-020-0559-z
  17. Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., et al. (1995). The nuclear receptor superfamily: the second decade. Cell 83, 835-839. https://doi.org/10.1016/0092-8674(95)90199-X
  18. Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M., and Gustafsson, J.A. (2001). Mechanisms of estrogen action. Physiol. Rev. 81, 1535-1565. https://doi.org/10.1152/physrev.2001.81.4.1535
  19. Preisler-Mashek, M.T., Solodin, N., Stark, B.L., Tyriver, M.K., and Alarid, E.T. (2002). Ligand-specific regulation of proteasome-mediated proteolysis of estrogen receptor-alpha. Am. J. Physiol. Endocrinol. Metab. 282, E891-E898. https://doi.org/10.1152/ajpendo.00353.2001
  20. Qin, B., Yu, J., Nowsheen, S., Wang, M., Tu, X., Liu, T., Li, H., Wang, L., and Lou, Z. (2019). UFL1 promotes histone H4 ufmylation and ATM activation. Nat. Commun. 10, 1242. https://doi.org/10.1038/s41467-019-09175-0
  21. Reid, G., Hubner, M.R., Metivier, R., Brand, H., Denger, S., Manu, D., Beaudouin, J., Ellenberg, J., and Gannon, F. (2003). Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol. Cell 11, 695-707. https://doi.org/10.1016/S1097-2765(03)00090-X
  22. Song, A., Wang, Y., Jiang, F., Yan, E., Zhou, J., Ye, J., Zhang, H., Ding, X., Li, G., Wu, Y., et al. (2021). Ubiquitin D promotes progression of oral squamous cell carcinoma via NF-kappa B signaling. Mol. Cells 44, 468-480. https://doi.org/10.14348/molcells.2021.2229
  23. Tatsumi, K., Yamamoto-Mukai, H., Shimizu, R., Waguri, S., Sou, Y.S., Sakamoto, A., Taya, C., Shitara, H., Hara, T., Chung, C.H., et al. (2011). The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice. Nat. Commun. 2, 181. https://doi.org/10.1038/ncomms1182
  24. Wang, Z., Gong, Y., Peng, B., Shi, R., Fan, D., Zhao, H., Zhu, M., Zhang, H., Lou, Z., Zhou, J., et al. (2019). MRE11 ufmylation promotes ATP activation. Nucleic Acids Res. 47, 4124-4135. https://doi.org/10.1093/nar/gkz110
  25. Yoo, H.M., Kang, S.H., Kim, J.Y., Lee, J.E., Seong, M.W., Lee, S.W., Ka, S.H., Sou, Y., Komatsu, M., Tanaka, K., et al. (2014). Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development. Mol. Cell 56, 261-274. https://doi.org/10.1016/j.molcel.2014.08.007
  26. Yoo, H.M., Park, J.H., Jeon, Y.J., and Chung, C.H. (2015). Ubiquitin-fold modifier 1 acts as a positive regulator of brest cancer. Front. Endocrinol. (Lausanne) 6, 36. https://doi.org/10.3389/fendo.2015.00036
  27. Zhang, Y., Zhang, M., Wu, J., Lei, G., and Li, H. (2012). Transcriptional regulation of the Ufm1 conjugation system in response to disturbance of the endoplasmic reticulum homeostasis and inhibition of vesicle trafficking. PLoS One 7, e48587. https://doi.org/10.1371/journal.pone.0048587
  28. Zhou, W. and Slingerland, J.M. (2014). Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat. Rev. Cancer 14, 26-38. https://doi.org/10.1038/nrc3622