• 제목/요약/키워드: estimation by learning

검색결과 613건 처리시간 0.025초

대학 내 학습공간과 공동 생활공간에 대한 실내 라돈 농도 측정과 유효선량 산출 (Indoor Radon Levels and Effective Dose Estimation in Learning and Common Living Space of University)

  • 김정수
    • 한국방사선학회논문지
    • /
    • 제12권3호
    • /
    • pp.329-334
    • /
    • 2018
  • 라돈은 자연방사성원소로 호흡을 통해 인체에 피폭된다. 본 연구에서는 2017년 6월 1일부터 2017년 8월 28일까지 3개월 동안 A대학의 8개 건축물에 대해 실내 라돈농도를 측정하여 비교하였고, 연간 유효선량을 도출하였다. 본 연구에서 A대학의 건축물 Hall G와 Hall F의 라돈농도는 각각 $81Bq/m^3$, $14Bq/m^3$로 나타났으며, 전체 조사 건축물의 평균 실내 라돈농도는 $41.63Bq/m^3$로 나타났다. 대학 내 학습공간과 생활공간에 대한 연간 유효선량 환산치의 평균은 0.40 mSv/y이며 최대 연간 유효선량은 0.78 mSv/y, 최소 연간 유효선량은 0.13 mSv/y로 나타났다. 학교는 학생들이 오랜 시간 머무르는 공간이므로 건축물에 대한 적절한 환기와 관리를 통해 실내라돈 농도를 낮추는 것이 라돈에 대한 자연방사선 피폭을 낮추는 방법이다.

ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기 (HIPI Controller of IPMSM Drive using ALM-FNN)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.57-66
    • /
    • 2009
  • 종래의 고정된 이득을 가진 PI 제어기는 지령속도, 부하변화 등과 같은 파라미터 변동에 대해서 매우 민감하다. IPMSM 드라이브의 정확한 속도제어는 비선형적인 전자기적 발생저항뿐만 아니라 회전자 속도와 권선저항사이의 비선형적 관계 때문에 복잡한 문제점이 있다. 따라서 광범위한 동작상태에서 최적 제어를 위해 PI 제어기의 이득값을 실시간으로 조절해야한다. 본 논문은 FNN과 ALM을 이용하여 IPMSM 드라이브의 HIPI 제어기를 제시한다. 제시된 제어기는 ANN을 이용하여 속도를 추정하고, 시스템 외란에 대해서 IPMSM 드라이브의 고성능 속도제어를 제시한다. PI 제어기의 이득값은 모든 동작상태에서 ALM-FNN에 의해 최적화 되어진다. 제시된 제어기는 다양한 동작상태에 대한 분석을 통해 타당성을 입증한다.

네덜란드의 초등 수학 교육과정에 대한 개관 - 자연수와 연산 영역을 중심으로 - (Reflections on the Primary School Mathematics Curriculum in the Netherlands - Focused on Number and Operations Strand -)

  • 정영옥
    • 대한수학교육학회지:학교수학
    • /
    • 제7권4호
    • /
    • pp.403-425
    • /
    • 2005
  • 본 연구는 네덜란드의 초등 교육과정에 대한 문헌 연구를 통해 RME에 기초한 초등 수학교육의 실제를 자연수와 연산 영역을 중심으로 구체적으로 알아보고 우리나라 교육과정과 교과서 개발을 위한 시사점을 도출하는 데 그 목적이 있다. 이러한 목적을 달성하기 위해 네덜란드의 초등 교육과정에 결정적인 영향을 미치는 요소인 핵심 목표, 네덜란드의 교과서, TAL 프로젝트의 결과물인 초등학교 학생들의 거시적인 교수 학습 경로를 살펴보았다. 그 결과 RME에 기초한 초등 수학교육은 현실 상황의 주제 중심의 통합형 교육과정이며, 자연수와 연산 영역 지도의 특징으로는 수세기, 상황화, 위치화, 구조화, 수준에 기초한 점진적 알고리즘화, 어림의 강조와 계산기의 적절한 사용을 강조하고 있음을 알 수 있었다. 이를 바탕으로 앞으로의 교육과정과 교과서 개발을 위해 논의할 문제로 수 개념 지도에서 농도수와 순서수 지도의 균형, 수의 상대적 크기의 지도, 다양한 연산 전략의 지도, 다양한 교수학적 모델의 사용을 제안하였다.

  • PDF

카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion (Camera and LiDAR Sensor Fusion for Improving Object Detection)

  • 이종서;김만규;김학일
    • 방송공학회논문지
    • /
    • 제24권4호
    • /
    • pp.580-591
    • /
    • 2019
  • 본 논문의 목적은 자율주행을 위하여 카메라와 라이다를 이용하여 객체를 검출하고 각 센서에서 검출된 객체를 late fusion 방식으로 융합을 하여 성능을 향상하는 것을 목적으로 한다. 카메라를 이용한 객체 검출은 one-stage 검출인 YOLOv3을, 검출된 객체의 거리 추정은 perspective matrix를, 라이다의 객체 검출은 K-means 군집화 기반 객체 검출을 각각 이용하였다. 카메라와 라이다 calibration은 PnP-RANSAC을 이용하여 회전, 변환 행렬을 구하였다. 센서 융합은 라이다에서 검출된 객체를 이미지 평면에 옮겨 Intersection over union(IoU)을 계산하고, 카메라에서 검출된 객체를 월드 좌표에 옮겨 거리, 각도를 계산하여 IoU, 거리 그리고 각도 세 가지 속성을 로지스틱 회귀를 이용하여 융합을 하였다. 융합을 통하여 각 센서에서 검출되지 않은 객체를 보완해주어 성능이 약 5% 증가하였다.

미시추 구간의 지반 층상정보 예측을 위한 정규 크리깅 및 인공신경망 기법의 비교 (Comparison of Ordinary Kriging and Artificial Neural Network for Estimation of Ground Profile Information in Unboring Region)

  • 전찬준;최창호;조진우
    • 한국지반환경공학회 논문집
    • /
    • 제20권3호
    • /
    • pp.15-20
    • /
    • 2019
  • 확한 토공량 설계를 위해서는 충분한 량의 지반조사 자료가 필요하나 비용적인 문제로 인하여 제한적인 지반조사가 수행되고 있다. 정확한 토공량 예측을 위해서 지반의 층상정보를 추정하는 것은 중요한 사항이며, 이러한 제한적인 지반조사 데이터로부터 정확한 토공량 예측을 위해서는 지구통계학적(geo-statistical) 분석방법으로 지반 층상정보를 예측할 수 있다. 또한, 기시추된 지반 층상정보를 활용하여 기계학습을 통하여 모델을 학습하여 미시추된 지반 층상정보를 예측할 수도 있는데, 본 논문에서는 인공신경망을 통하여 미시추된 지반 층상정보를 예측하고 기존의 정규 크리깅 기법과 성능을 비교한다. 이를 위하여, 84공의 지반 층상정보를 활용한다. 84공의 지반 층상정보의 데이터셋 중에서 75공을 학습 데이터셋으로 활용하였고, 나머지 9공을 검증 데이터셋으로 활용하였다. 검증 데이터셋의 실측된 지반 층상정보와 정규 크리깅 기법과 인공신경망으로 예측된 지반 층상정보를 비교 분석한다.

SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현 (Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM)

  • 김유중;강준우;윤정빈;이유빈;백수황
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.687-694
    • /
    • 2022
  • 본 논문에서는 Visual 동시적 위치추정 및 지도작성(SLAM : Simultaneous Localization and Mapping)기술을 응용하여 실내에서 생성된 SLAM 맵을 기반으로 지정된 목적지에 물건을 배달하는 자율주행 차량 플랫폼을 제안하였다. 실내에서 SLAM 맵을 생성하기 위해 소형 자율주행 차량 플랫폼의 상단에 SLAM 맵 생성을 위한 심도 카메라를 설치하고 SLAM 맵 속에서의 정확한 위치추정을 하기 위해 추적 카메라를 장착하여 구현하였다. 또한, 목적지의 표찰을 인식하기 위해 합성곱 신경망(CNN : Convolutional neural network)을 사용하여 목적지에 정확하게 도착할 수 있도록 주행 알고리즘을 적용하여 설계하였다. 실내 배송 자율주행 차량을 실제로 제작하였고 SLAM 맵의 정확도 확인과 CNN을 통한 목적지 표찰 인식 실험을 수행하였다. 결과적으로 표찰 인식의 성공률을 향상시켜 구현한 실내 배송용 자율주행 차량의 활용 적합성 여부를 확인하였다.

단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크 (Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution)

  • 한현호
    • 디지털정책학회지
    • /
    • 제2권3호
    • /
    • pp.1-7
    • /
    • 2023
  • 본 논문은 단일 영상을 이용하여 초해상도 방법을 수행하기 위해 질감-공간 영역을 분리한 뒤 세부정보를 중심으로 특징을 분류하는 방법을 제안한다. CNN(Convolutional Neural Network) 기반의 초해상도는 세부정보를 개선하기 위한 특징 추정 과정에서의 복잡한 절차와 중복된 특징 정보의 생성으로 인해 초해상도에서 가장 중요한 기준인 품질 저하가 발생할 수 있다. 제안하는 방법은 절차적 복잡성을 줄이고 중복 특징 정보의 생성을 최소화하여 초해상도 결과의 품질을 개선하기 위해 입력 영상을 질감과 공간의 두 채널로 분리하였다. 질감 채널에서는 세부정보 복원을 위해 다중스케일로 변환한 영상에 단계별 skip-connection을 적용한 잔차 블록 구조를 적용하여 특징 정제 과정을 수행함으로써 특징 추출을 개선하였고, 공간 채널에서는 평활화된 형태의 특징을 활용하여 잡음을 제거하고 구조적 특징을 유지하도록 하였다. 제안하는 방법을 이용해 실험한 결과 기존 초해상도 방법대비 PSNR 및 SSIM 성능 평가에서 향상된 결과를 보여 품질이 개선됨을 확인할 수 있었다.

LSTM을 이용한 지자기 방위각 추정 기술 연구 (A Study on Estimating Geomagnetic Azimuth using LSTM)

  • 오종택;김성훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.137-141
    • /
    • 2022
  • 지자기를 측정하여 방위각을 추정하는 방법은 매우 오래전부터 사용되어 왔다. 그러나 실내외의 금속 구조물 때문에 지자기에 외란이 발생하여 추정된 방위각에 오차가 발생하는 경우가 많다. 이를 보정하기 위한 연구가 많이 진행되어 왔지만 오차를 줄이는데 한계가 있다. 본 논문에서는 측정된 지자기 센서 값을 LSTM 구조의 신경망에 적용하여 방위각을 추정하는 방법을 제안한다. 신경망을 학습시키기 위해서는 데이터의 사전 처리가 매우 중요하며, 본 논문에서는 스마트폰에 내장된 가속도 센서와 자이로 센서, 지자기 센서를 이용하여 데이터를 수집하고, EKF를 사용하여 지자기 센서 값을 균등하게 샘플링하는 방법으로 학습 데이터를 생성하였다. 4개의 은닉층을 사용하여 평균 방위각 추정 오차가 0.9도인 결과를 얻었다.

심층신경망을 이용한 어선의 운동응답 추정 (Motion Response Estimation of Fishing Boats Using Deep Neural Networks)

  • 박태원;박동우;서장훈
    • 해양환경안전학회지
    • /
    • 제29권7호
    • /
    • pp.958-963
    • /
    • 2023
  • 최근에 선박을 안전하게 설계 및 운항하기 위해 인공지능으로 운동성능을 예측하는 연구가 늘고 있다. 하지만 일반적인 선박에 비해 소형 어선에 대한 연구는 부족한 실정이다. 본 논문에서는 소형 어선의 운동성능 계산에 필수적인 운동응답을 심층신경망으로 추정하는 모델을 제안한다. 15척의 소형 어선에 대하여 유체동역학 해석을 수행하였으며 이를 통해 데이터베이스를 구축하였다. 환경 조건과 주요 제원을 입력 데이터로, 단위 파고에 대한 운동응답(Response Amplitude Operator)을 출력 데이터로 설정하였다. 훈련된 심층신경망 모델을 통해 예측된 운동응답은 유체동역학 해석 결과와 유사한 경향을 보이며 고주파 성분을 가진 운동응답 함수를 낮은 오차로 근사하는 결과를 보여준다. 본 연구의 결과를 바탕으로 어선의 선형 특성 고려한 심층신경망 모델로 확장하여 연구 결과의 활용도를 넓히고자 한다.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.