라돈은 자연방사성원소로 호흡을 통해 인체에 피폭된다. 본 연구에서는 2017년 6월 1일부터 2017년 8월 28일까지 3개월 동안 A대학의 8개 건축물에 대해 실내 라돈농도를 측정하여 비교하였고, 연간 유효선량을 도출하였다. 본 연구에서 A대학의 건축물 Hall G와 Hall F의 라돈농도는 각각 $81Bq/m^3$, $14Bq/m^3$로 나타났으며, 전체 조사 건축물의 평균 실내 라돈농도는 $41.63Bq/m^3$로 나타났다. 대학 내 학습공간과 생활공간에 대한 연간 유효선량 환산치의 평균은 0.40 mSv/y이며 최대 연간 유효선량은 0.78 mSv/y, 최소 연간 유효선량은 0.13 mSv/y로 나타났다. 학교는 학생들이 오랜 시간 머무르는 공간이므로 건축물에 대한 적절한 환기와 관리를 통해 실내라돈 농도를 낮추는 것이 라돈에 대한 자연방사선 피폭을 낮추는 방법이다.
종래의 고정된 이득을 가진 PI 제어기는 지령속도, 부하변화 등과 같은 파라미터 변동에 대해서 매우 민감하다. IPMSM 드라이브의 정확한 속도제어는 비선형적인 전자기적 발생저항뿐만 아니라 회전자 속도와 권선저항사이의 비선형적 관계 때문에 복잡한 문제점이 있다. 따라서 광범위한 동작상태에서 최적 제어를 위해 PI 제어기의 이득값을 실시간으로 조절해야한다. 본 논문은 FNN과 ALM을 이용하여 IPMSM 드라이브의 HIPI 제어기를 제시한다. 제시된 제어기는 ANN을 이용하여 속도를 추정하고, 시스템 외란에 대해서 IPMSM 드라이브의 고성능 속도제어를 제시한다. PI 제어기의 이득값은 모든 동작상태에서 ALM-FNN에 의해 최적화 되어진다. 제시된 제어기는 다양한 동작상태에 대한 분석을 통해 타당성을 입증한다.
본 연구는 네덜란드의 초등 교육과정에 대한 문헌 연구를 통해 RME에 기초한 초등 수학교육의 실제를 자연수와 연산 영역을 중심으로 구체적으로 알아보고 우리나라 교육과정과 교과서 개발을 위한 시사점을 도출하는 데 그 목적이 있다. 이러한 목적을 달성하기 위해 네덜란드의 초등 교육과정에 결정적인 영향을 미치는 요소인 핵심 목표, 네덜란드의 교과서, TAL 프로젝트의 결과물인 초등학교 학생들의 거시적인 교수 학습 경로를 살펴보았다. 그 결과 RME에 기초한 초등 수학교육은 현실 상황의 주제 중심의 통합형 교육과정이며, 자연수와 연산 영역 지도의 특징으로는 수세기, 상황화, 위치화, 구조화, 수준에 기초한 점진적 알고리즘화, 어림의 강조와 계산기의 적절한 사용을 강조하고 있음을 알 수 있었다. 이를 바탕으로 앞으로의 교육과정과 교과서 개발을 위해 논의할 문제로 수 개념 지도에서 농도수와 순서수 지도의 균형, 수의 상대적 크기의 지도, 다양한 연산 전략의 지도, 다양한 교수학적 모델의 사용을 제안하였다.
본 논문의 목적은 자율주행을 위하여 카메라와 라이다를 이용하여 객체를 검출하고 각 센서에서 검출된 객체를 late fusion 방식으로 융합을 하여 성능을 향상하는 것을 목적으로 한다. 카메라를 이용한 객체 검출은 one-stage 검출인 YOLOv3을, 검출된 객체의 거리 추정은 perspective matrix를, 라이다의 객체 검출은 K-means 군집화 기반 객체 검출을 각각 이용하였다. 카메라와 라이다 calibration은 PnP-RANSAC을 이용하여 회전, 변환 행렬을 구하였다. 센서 융합은 라이다에서 검출된 객체를 이미지 평면에 옮겨 Intersection over union(IoU)을 계산하고, 카메라에서 검출된 객체를 월드 좌표에 옮겨 거리, 각도를 계산하여 IoU, 거리 그리고 각도 세 가지 속성을 로지스틱 회귀를 이용하여 융합을 하였다. 융합을 통하여 각 센서에서 검출되지 않은 객체를 보완해주어 성능이 약 5% 증가하였다.
확한 토공량 설계를 위해서는 충분한 량의 지반조사 자료가 필요하나 비용적인 문제로 인하여 제한적인 지반조사가 수행되고 있다. 정확한 토공량 예측을 위해서 지반의 층상정보를 추정하는 것은 중요한 사항이며, 이러한 제한적인 지반조사 데이터로부터 정확한 토공량 예측을 위해서는 지구통계학적(geo-statistical) 분석방법으로 지반 층상정보를 예측할 수 있다. 또한, 기시추된 지반 층상정보를 활용하여 기계학습을 통하여 모델을 학습하여 미시추된 지반 층상정보를 예측할 수도 있는데, 본 논문에서는 인공신경망을 통하여 미시추된 지반 층상정보를 예측하고 기존의 정규 크리깅 기법과 성능을 비교한다. 이를 위하여, 84공의 지반 층상정보를 활용한다. 84공의 지반 층상정보의 데이터셋 중에서 75공을 학습 데이터셋으로 활용하였고, 나머지 9공을 검증 데이터셋으로 활용하였다. 검증 데이터셋의 실측된 지반 층상정보와 정규 크리깅 기법과 인공신경망으로 예측된 지반 층상정보를 비교 분석한다.
본 논문에서는 Visual 동시적 위치추정 및 지도작성(SLAM : Simultaneous Localization and Mapping)기술을 응용하여 실내에서 생성된 SLAM 맵을 기반으로 지정된 목적지에 물건을 배달하는 자율주행 차량 플랫폼을 제안하였다. 실내에서 SLAM 맵을 생성하기 위해 소형 자율주행 차량 플랫폼의 상단에 SLAM 맵 생성을 위한 심도 카메라를 설치하고 SLAM 맵 속에서의 정확한 위치추정을 하기 위해 추적 카메라를 장착하여 구현하였다. 또한, 목적지의 표찰을 인식하기 위해 합성곱 신경망(CNN : Convolutional neural network)을 사용하여 목적지에 정확하게 도착할 수 있도록 주행 알고리즘을 적용하여 설계하였다. 실내 배송 자율주행 차량을 실제로 제작하였고 SLAM 맵의 정확도 확인과 CNN을 통한 목적지 표찰 인식 실험을 수행하였다. 결과적으로 표찰 인식의 성공률을 향상시켜 구현한 실내 배송용 자율주행 차량의 활용 적합성 여부를 확인하였다.
본 논문은 단일 영상을 이용하여 초해상도 방법을 수행하기 위해 질감-공간 영역을 분리한 뒤 세부정보를 중심으로 특징을 분류하는 방법을 제안한다. CNN(Convolutional Neural Network) 기반의 초해상도는 세부정보를 개선하기 위한 특징 추정 과정에서의 복잡한 절차와 중복된 특징 정보의 생성으로 인해 초해상도에서 가장 중요한 기준인 품질 저하가 발생할 수 있다. 제안하는 방법은 절차적 복잡성을 줄이고 중복 특징 정보의 생성을 최소화하여 초해상도 결과의 품질을 개선하기 위해 입력 영상을 질감과 공간의 두 채널로 분리하였다. 질감 채널에서는 세부정보 복원을 위해 다중스케일로 변환한 영상에 단계별 skip-connection을 적용한 잔차 블록 구조를 적용하여 특징 정제 과정을 수행함으로써 특징 추출을 개선하였고, 공간 채널에서는 평활화된 형태의 특징을 활용하여 잡음을 제거하고 구조적 특징을 유지하도록 하였다. 제안하는 방법을 이용해 실험한 결과 기존 초해상도 방법대비 PSNR 및 SSIM 성능 평가에서 향상된 결과를 보여 품질이 개선됨을 확인할 수 있었다.
지자기를 측정하여 방위각을 추정하는 방법은 매우 오래전부터 사용되어 왔다. 그러나 실내외의 금속 구조물 때문에 지자기에 외란이 발생하여 추정된 방위각에 오차가 발생하는 경우가 많다. 이를 보정하기 위한 연구가 많이 진행되어 왔지만 오차를 줄이는데 한계가 있다. 본 논문에서는 측정된 지자기 센서 값을 LSTM 구조의 신경망에 적용하여 방위각을 추정하는 방법을 제안한다. 신경망을 학습시키기 위해서는 데이터의 사전 처리가 매우 중요하며, 본 논문에서는 스마트폰에 내장된 가속도 센서와 자이로 센서, 지자기 센서를 이용하여 데이터를 수집하고, EKF를 사용하여 지자기 센서 값을 균등하게 샘플링하는 방법으로 학습 데이터를 생성하였다. 4개의 은닉층을 사용하여 평균 방위각 추정 오차가 0.9도인 결과를 얻었다.
최근에 선박을 안전하게 설계 및 운항하기 위해 인공지능으로 운동성능을 예측하는 연구가 늘고 있다. 하지만 일반적인 선박에 비해 소형 어선에 대한 연구는 부족한 실정이다. 본 논문에서는 소형 어선의 운동성능 계산에 필수적인 운동응답을 심층신경망으로 추정하는 모델을 제안한다. 15척의 소형 어선에 대하여 유체동역학 해석을 수행하였으며 이를 통해 데이터베이스를 구축하였다. 환경 조건과 주요 제원을 입력 데이터로, 단위 파고에 대한 운동응답(Response Amplitude Operator)을 출력 데이터로 설정하였다. 훈련된 심층신경망 모델을 통해 예측된 운동응답은 유체동역학 해석 결과와 유사한 경향을 보이며 고주파 성분을 가진 운동응답 함수를 낮은 오차로 근사하는 결과를 보여준다. 본 연구의 결과를 바탕으로 어선의 선형 특성 고려한 심층신경망 모델로 확장하여 연구 결과의 활용도를 넓히고자 한다.
Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
Steel and Composite Structures
/
제49권2호
/
pp.161-180
/
2023
In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.