DOI QR코드

DOI QR Code

Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM

SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현

  • 김유중 (상명대학교 휴먼지능로봇공학과) ;
  • 강준우 (상명대학교 휴먼지능로봇공학과) ;
  • 윤정빈 (상명대학교 휴먼지능로봇공학과) ;
  • 이유빈 (상명대학교 휴먼지능로봇공학과) ;
  • 백수황 (상명대학교 휴먼지능로봇공학과)
  • Received : 2022.06.28
  • Accepted : 2022.08.17
  • Published : 2022.08.31

Abstract

In this paper, we proposed an autonomous vehicle platform that delivers goods to a designated destination based on the SLAM (Simultaneous Localization and Mapping) map generated indoors by applying the Visual SLAM technology. To generate a SLAM map indoors, a depth camera for SLAM map generation was installed on the top of a small autonomous vehicle platform, and a tracking camera was installed for accurate location estimation in the SLAM map. In addition, a convolutional neural network (CNN) was used to recognize the label of the destination, and the driving algorithm was applied to accurately arrive at the destination. A prototype of an indoor delivery autonomous vehicle was manufactured, and the accuracy of the SLAM map was verified and a destination label recognition experiment was performed through CNN. As a result, the suitability of the autonomous driving vehicle implemented by increasing the label recognition success rate for indoor delivery purposes was verified.

본 논문에서는 Visual 동시적 위치추정 및 지도작성(SLAM : Simultaneous Localization and Mapping)기술을 응용하여 실내에서 생성된 SLAM 맵을 기반으로 지정된 목적지에 물건을 배달하는 자율주행 차량 플랫폼을 제안하였다. 실내에서 SLAM 맵을 생성하기 위해 소형 자율주행 차량 플랫폼의 상단에 SLAM 맵 생성을 위한 심도 카메라를 설치하고 SLAM 맵 속에서의 정확한 위치추정을 하기 위해 추적 카메라를 장착하여 구현하였다. 또한, 목적지의 표찰을 인식하기 위해 합성곱 신경망(CNN : Convolutional neural network)을 사용하여 목적지에 정확하게 도착할 수 있도록 주행 알고리즘을 적용하여 설계하였다. 실내 배송 자율주행 차량을 실제로 제작하였고 SLAM 맵의 정확도 확인과 CNN을 통한 목적지 표찰 인식 실험을 수행하였다. 결과적으로 표찰 인식의 성공률을 향상시켜 구현한 실내 배송용 자율주행 차량의 활용 적합성 여부를 확인하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1061567).

References

  1. J. Oh, P. Lee, S. Kim, and W. Lee, "A Study on the Delvelopment of In door Autonomous Mobile Robots," J. of Institute of Control, Robotics and Systems, vol 24, no. 9, 2018, pp. 814-821. https://doi.org/10.5302/j.icros.2018.18.0121
  2. J. Kim, J. Heo, S. Jung, and S. Kim, "Path-planning using Modified Genetic Algorithm and SLAM based on Feature Map for Autonomous Vehicle," J. of the Korean Institute of Intelligent Systems, vol. 19, no. 3, 2009, pp. 381-387. https://doi.org/10.5391/JKIIS.2009.19.3.381
  3. J. Han, J. Hwang, S. Hong, and Y. Ryuh, "Complementary Filtering for the Self-Localization of Indoor Autonomous Mobile Robots," J. of Institute of Control, Robotics and Systems, vol. 16, no. 11, 2010, pp. 1110-1116. https://doi.org/10.5302/J.ICROS.2010.16.11.1110
  4. W. Lee and S. Yun, "Estimation of optimal position of a mobile robot using object recognition and hybrid thinning method," J. of the Korea Institute of Information and Communication Engineering, vol. 25, no.6, 2021, pp. 785-791. https://doi.org/10.6109/JKIICE.2021.25.6.785
  5. J. Shin, J. Yoo, J. Han, I. Hwang, and H. Park, "A Study on Basic Technology for Autonomous-Driving Using RC car," J. of the Korea Institute of Electronic Communication Sciences, vol. 17. no. 1, Feb. 2022, pp. 49-58.
  6. J. Kim, Y. Ju, and E. Kim, "Object Recognition Technology using LiDAR Sensor for Obstacle Detection of Agricultural Autonomous Robot," J. of the Korea Institute of Electronic Communication Sciences, vol. 16. no. 3, June 2021, pp. 565-570. https://doi.org/10.13067/JKIECS.2021.16.3.565
  7. U. Kim, B. Kim, and I. Kim, "Implementation of Serving Mobile Robot Using ROS," The J. of Korean Institute of Information Technology, vol. 17, no. 2, 2019, pp. 33-43. https://doi.org/10.14801/jkiit.2019.17.2.33
  8. J. Kim and E. Kim, "Agricultural Autonomous Robots System for Automatic Transfer of Agricultural Harvests," J. of the Korea Institute of Electronic Communication Sciences, vol. 16. no. 4, Aug. 2021, pp. 749-754. https://doi.org/10.13067/JKIECS.2021.16.4.749
  9. D. Choi and J. Jang, "A Study on the Development of a Program to Body Circulation Measurement Using the Machine Learning and Depth Camera," Int. J. of Internet, Broadcasting and Communication, vol. 12, no. 1, 2020, pp. 122-129. https://doi.org/10.7236/IJIBC.2020.12.1.122
  10. Y. Chen, J. Tang, C. Jiang, L. Zhu, M. Lehtomaki, H. Kaartinen, R. Kaijaluoto, Y. Wang, J. Hyyppa, H. Hyyppa, H. Zhou, L. Pei, and R. Chen, "The Accuracy Comparison of Three Simultaneous Localization and Mapping(SLAM)-Based Indoor Mapping Technologies," Sensors, vol. 18, no. 10, 2018, pp. 1-25. https://doi.org/10.1109/JSEN.2017.2772700
  11. K. Shokhrukh and J. Yoo, "Lightweight Residual Layer Based Convolutional Neural Networks for Traffic Sign Recognition," J. of the Korea Institute of Electronic Communication Sciences, vol. 17. no. 1, Feb. 2022, pp. 105-110.
  12. S. Chen, B. Zhou, C. Jiang, W. Xue, and Q. Li, "A LiDAR/Visual SLAM Backend with Loop Closure Detection and Graph Optimization," Remote Sensing, vol. 13, no. 14, 2720, 2021, pp. 1-29.