• Title/Summary/Keyword: erythritol

Search Result 85, Processing Time 0.027 seconds

Effect of xylitol and erythritol on the quality characteristics of Yuza tea (자이리톨과 에리스리톨을 이용한 유자차의 품질 특성)

  • 윤재영;김희섭
    • Korean journal of food and cookery science
    • /
    • v.19 no.6
    • /
    • pp.737-744
    • /
    • 2003
  • The effects of xylitol and/or erythritol as the alternative ingredients to sugar on the quality characteristics of Yuza tea were studied. The relative sweetness of xylitol and erythritol to a 10% sucrose solution were 1.10 and 0.71 respectively and there were no change after the addition of the acid and flavoring agent. The sensory characteristics of Yuza tea with xylitol were quite similar in many attributes to Yuza tea with sugar, while Yuza tea with erythritol had many undesirable attributes. Yuza tea with a mixture of xylitol and erythritol(1:1) was less sweet and less acceptable than Yuza tea with sugar. The consumer acceptance test showed that the overall acceptability of Yuza tea made with xylitol was similar to the Yuza tea with sugar. Adding sucralose to the Yuza tea with a mixture of xylitol and erythritol improved the sweetness and overall acceptability in the consumer acceptance test. The pH value of the erythritol Yuza tea was 3.16 and showed a significantly lower value than the 3.39 of sugar and xylitol. The refractive index of the sugar Yuza tea was the highest at 21.03$^{\circ}$Bx. The vitamin C content of Yuzachung with sugar was 34.5mg/100g and the dietary fiber content was 2,80g/100g. Xylitol Yuzachung showed the highest a and b values, but when it was diluted with water to make Yuza tea, the intensity of the color was not significantly different from the Yuza tea with sugar.

Optimization of Culture Conditions for Erythritol Production by Torula sp.

  • Kim, Kyung-Ah;Noh, Bohg-Soo;Lee, Jung-Kul;Kim, Sang-Yong;Park, Yong-Cheol;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.69-74
    • /
    • 2000
  • The medium for erythritol production by Torula sp. in a 500-ml baffled flask was optimized to be 300 g/I sucrose, 10 g/I yeast extract, 3 g/I $KH_2PO_4$, and 10 mg/I $CuSO_4{\cdot}5H_2O{\;}at{\;}34^{\circ}C$ with initial pH of 5.5. Using this optimal medium, erythritol of 166 g/I was obtained after 140 h of cultivation, corresponding to 55.3% of the erythritol yield from sucrose with a productivity of 1.11 g/I/h. Optimal concentrations of carbbon and nitrogen sources in a fermentor were higher than that in a flask due to the higher oxygen supply of the fermentor. Employing the medium containing 300 g/I or 400 g/I sucrose for the determination of optimal C/N ratio, the C/N ratio was found to be more important than the nitrogen concentration for effective erythritol production, The optimal ratio of yeast extract to sucrose (g/g) was 20. The yield and productivity of erythritol were maximal in the medium containing 400 g/I sucrose and 20 g/I yeast extract. when dissolved oxygen in the culture was increased, the cell mass increased but the erythritol production was manimal in the range of 5 to 10% of dissolved oxygen. Under the optimal the rane of 5 to 10% of dissolved oxygen. Under the optimal culture condition of the fermentor, a final erythritol concentration of 200 gI was obtained after 120 h with a yield of 50% and the productivity was 1.67 g/I/h. The yield was the highest among erythritol-producting microorganisms

  • PDF

The inhibitive effect of erythritol on growth and acidogenic ability of Streptococcus mutans (에리스리톨의 Streptococcus mutans에 대한 성장력과 산생성능의 억제효과)

  • Park, Young-Nam
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.515-522
    • /
    • 2013
  • The purpose of this study was to closely examine the inhibitive effect of erythritol on growth and acidogenic ability of Streptococcus mutans. As expected, the growth of S. mutans was comparably increased with the addition of sucrose. However, xylitol and erythritol remarkably reduced the growth of S. mutans. Growth inhibition was detected at more than 5% of erythritol although xylitol showed growth inhibition effect at all concentrations tested. Growth inhibition effect was monitored with the combination of same concentration of erythritol and other carbohydrates. Combination of 5% or 10% erythritol with xylitol showed effective growth inhibition. Addition of 2.5%, 5%, or 10% erythritol with sorbitol also showed growth inhibition. From these results, erythritol showed potency of growth inhibition of S. mutans, which is involved in dental caries, and was confirmed to be an excellent sugar substitute, which has effect on preventing caries.

Effect of Erythritol on Glucosyl Transferase and Fructosyl Transferase Gene Expression in Streptococcus mutans (Streptococcus mutans의 Glucosyl Transferase와 Fructosyl Transferase 유전자 발현에 대한 Erythritol의 효과)

  • Young-Nam PARK;Jae-Ki RYU
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.151-158
    • /
    • 2023
  • Erythritol is a sweetener produced by yeast from glucose and a natural sugar found in fermented foods such as mushrooms, wine, fruits, rice wine, and soy sauce. Correct information and basic data when producing or using products for preventing dental caries by checking the gene expression patterns of glucosyl transferase (GTF) and fructosyl transferase (FTF) of Streptococcus mutans in erythritol and other sweeteners it was implemented to provide. Erythritol inhibited the growth of Streptococcus mutans, which is involved in dental caries. When used as a sweetener to replace sucrose, erythritol had an excellent caries-preventative effect. In particular, erythritol reduced the expressions of gtfB, gtfC, gtfD, and FTF, which are related to the synthesis of extracellular polysaccharides, and thereby reduced the formation of dental plaque and the attachment rate of bacteria to tooth surfaces. The study shows erythritol has potential use as an anticariogenic sweetener that inhibits the mechanism underlying caries caused by Streptococci.

Effect of Glucose Concentration on the Production of Erythritol by Trichosporon sp.

  • Park, Jin-Byung;Seo, Byung-Cheol;Kim, Jung-Ryul;Pek, Un-Hua;Park, Yong-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.543-546
    • /
    • 1998
  • The effect of glucose concentration on the production of erythritol by Trichosporon sp. was mainly studied. The specific growth rate and production rate of erythritol gave the highest values of $0.23 h^{-1}\; and\; 4.2 g/\ell/h,\; respectively,\; on\; 100 g \; glucose/\ell$ of medium. The conversion yield of erythritol during the exponential phase and the stationary phase was constantly maintained at 19% and 51 %, respectively, while the glucose concentration in the medium varied from 100 g/$\ell$ to 400 g/$\ell$. The maximum overall erythritol conversion yield of 47% was obtained when the glucose concentration in the medium was 400 g/$\ell$. It corresponded to a 74% increase compared with the 100 g/$\ell$ glucose medium. The diauxy growth of this microbe was also observed. It grew exponentially consuming glucose, then after the second lag phase, biomass slowly increased using glycerol and erythritol.

  • PDF

Low Cariogenicity of Maltosyl-erythritol, Major Transglycosylation Product of Erythritol, by Bacillus stearothermophilus Maltogenic Amylase

  • Jeon, Eun-Joo;Jung, Il-Hun;Cho, Kil-Soon;Seo, Eun-Sung;Kim, Do-Man;Lee, Sung-Joon;Park, Kwan-Hwa;Moon, Tae-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.815-818
    • /
    • 2003
  • Maltosyl(G2)-erythritol, produced by the transglycosylation reaction of erythritol with maltotriose by Bacillus stearothermophilus maltogenic amylase, was not utilized either as a substrate for lactic acid production or for water-insoluble glucan synthesis. An inhibition assay of dextransucrase and mutansucrase showed that the dental caries suppression effect of G2-erythritol was greater than that of erythritol.

Genotoxicity Assessment of Erythritol by Using Short-term Assay

  • Chung, Young-Shin;Lee, Michael
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Erythritol is a sugar alcohol that is widely used as a natural sugar substitute. Thus, the safety of its usage is very important. In the present study, short-term genotoxicity assays were conducted to evaluate the potential genotoxic effects of erythritol. According to the OECD test guidelines, the maximum test dose was 5,000 ${\mu}g$/plate in bacterial reverse mutation tests, 5,000 ${\mu}g/ml$ in cell-based assays, and 5,000 mg/kg for in vivo testing. An Ames test did not reveal any positive results. No clastogenicity was observed in a chromosomal aberration test with CHL cells or an in vitro micronucleus test with L5178Y $tk^{+/-}$ cells. Erythritol induced a marginal increase of DNA damage at two high doses by 24 hr of exposure in a comet assay using L5178Y $tk^{+/-}$ cells. Additionally, in vivo micronucleus tests clearly demonstrated that oral administration of erythritol did not induce micronuclei formation of the bone marrow cells of male ICR mice. Taken together, our results indicate that erythritol is not mutagenic to bacterial cells and does not cause chromosomal damage in mammalian cells either in vitro or in vivo.

Characterization of Erythritol 4-Phosphate Dehydrogenase from Penicillium sp. KJ81 (Penicillium sp. KJ81이 생산하는 Erythritol 4-Phosphate Dehydrogenase의 특성)

  • Yun, Na-Rae;Park, Sang-Hee;Lim, Jai-Yun
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.200-207
    • /
    • 2009
  • In this study, the characterization of purified erythritol 4-phosphate dehydrogenase, key enzyme of erythritol biosynthesis, produced by Penicillium sp. KJ81 was investigated. Optimum production conditions of erythritol 4-phosphate dehydrogenase was 1 vvm areration, 200 rpm agitation, at $37^{\circ}C$ for 8 days in the medium containing 30% sucrose, 0.5% yeast extract, 0.5% $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, and 0.05%$MgCl_2$. Erythritol 4-phosphate dehydrogenase was purified through ultrafiltration and preparative gel electrophoresis from cell extract of Penicillium sp. KJ81. This enzyme was especially active on erythrose 4-phosphate with 1.07 mM of Km value. It gave a single band on native polyacrylamide gel electrophoresis and an isoelectric point of 4.6. The enzyme had an optimal activity at pH 7.0 and $30^{\circ}C$. It was stable between pH 4.0 and 9.0, and also below $30^{\circ}C$. The enzyme activity was completely inhibited by 1mM $Cu^{2+}$ and 1 mM $Zn^{2+}$, but was not significantly affected by other cations tested. This enzyme was inactivated by treatment of tyrosine specific reagent, iodine and tryptophan specific reagent, N-bromosuccinimide. The substrate of the enzyme, erythrose 4-phosphate showed protective effect on the inactivation of the enzyme by both reagents. These results suggest that tryptophan and tyrosine residues are probably located at or near active site of the enzyme.

Candida magnoliae SR101에 의한 Erythritol 및 Gluconic acid 생산에 대한 Phosphate의 영향

  • Park, Byeong-Jun;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.255-258
    • /
    • 2000
  • The effect of phosphate on the production of erythritol and gluconic acid during the batch fermentation of Candida magnoliae SR101 was investigated. In the flask culture experiments, the results showed that phosphate concentration affected the production of erythritol and gluconic acid in Candida magnoliae. In the tormentor experiments, the increase of phosphate concentration of medium up to 10 g/L increased the gluconic acid, while the maximum erythritol concentration was 121.7 g/L from 250 g/L glucose and 3 g/L $KH_2PO_4$

  • PDF

Cell Entrapment for Bifidobacteria to Increase Viability and Preservative Stability using Erythritol (Erythritol을 이용한 Bifidobacteria의 생존력과 저장안정성 증대를 위한 세포포집)

  • 임태빈;백인걸;정찬섭;류지성;지근억;허병기;허태련
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.531-536
    • /
    • 2002
  • In this study, we attempted to increase the survivability of bifidobacteria in simulated gastric juices and bile salts after cell entrapment with alginate and various food additives, such as erythritol, isomalt, palatinose, skim milk, xanthan gum, isomalto-oligosaccharide, fructo-oligosaccharide, galacto-oligosaccharide, pectin, and mono-sodium glutamate. Additionaly, the stability of bifidobacteria during storage was investigated by measuring survival rate at different temperatures, i.e. at 4$^{\circ}C$, 25$^{\circ}C$ and -20$^{\circ}C$. Bifidobacteria were immobilized in alginate beads and the survival rate was monitored. It was found that bifidobacieria entrapped with 2.5%, alginate showed the highest survival rate at 12%. After addition of the various protective agents, erythritol(1%) showed the best protective efficiency with a survival rate of 56.0% among the additives tested when exposed to simulated gastric juices for 3 h. Immobilized cells suspended in 5% skim milk and stored at 4$^{\circ}C$ survived significantly more than cells stored at 25$^{\circ}C$ and -20$^{\circ}C$. Consequently, the study shows that the survival rate of bifidobacteria immobilized in combination with 2.5% alginate beads and 1% erythritol may be signifcantly increased in simulated gastric juices and bile salts.