DOI QR코드

DOI QR Code

Effect of Erythritol on Glucosyl Transferase and Fructosyl Transferase Gene Expression in Streptococcus mutans

Streptococcus mutans의 Glucosyl Transferase와 Fructosyl Transferase 유전자 발현에 대한 Erythritol의 효과

  • Young-Nam PARK (Department of Dental Hygiene, Gimcheon University) ;
  • Jae-Ki RYU (Department of Biomedical Laboratory Science, Gimcheon University)
  • Received : 2023.08.10
  • Accepted : 2023.08.24
  • Published : 2023.09.30

Abstract

Erythritol is a sweetener produced by yeast from glucose and a natural sugar found in fermented foods such as mushrooms, wine, fruits, rice wine, and soy sauce. Correct information and basic data when producing or using products for preventing dental caries by checking the gene expression patterns of glucosyl transferase (GTF) and fructosyl transferase (FTF) of Streptococcus mutans in erythritol and other sweeteners it was implemented to provide. Erythritol inhibited the growth of Streptococcus mutans, which is involved in dental caries. When used as a sweetener to replace sucrose, erythritol had an excellent caries-preventative effect. In particular, erythritol reduced the expressions of gtfB, gtfC, gtfD, and FTF, which are related to the synthesis of extracellular polysaccharides, and thereby reduced the formation of dental plaque and the attachment rate of bacteria to tooth surfaces. The study shows erythritol has potential use as an anticariogenic sweetener that inhibits the mechanism underlying caries caused by Streptococci.

에리스리톨은 4탄당의 당알코올에 해당되며 포도당을 원료로 효모에 의해 생산되는 발효 감미료제로 버섯, 포도주, 과실류, 청주, 간장 등의 발효식품에 함유되어 있는 천연당이다. 에리스리톨과 다른 감미제에서 Streptococcus mutans (S. mutans)의 glucosyl transferase (GTF)와 fructosyl transferase (FTF)의 유전자 발현 양상을 확인하여 치아우식 예방을 위한 제품을 생산하거나 활용 시 올바른 정보와 기초자료를 제공하고자 시행하였다. 연구결과 에리스리톨은 치아우식에 관여하는 S. mutans의 생육을 억제하는 것으로 나타났으며 자당(설탕) 대체 감미제로서 우식예방 효과가 우수한 것으로 확인이 되었다. 특히 세포외다당류 합성에 관련된 gtf B, gtf C, gtf D, ftf 의 발현이 낮게 나타나 세포외부에 다당류의 합성을 억제하여 치면세균막 형성과 치면에 세균의 부착률을 감소시킬 수 있을 것으로 생각된다. 따라서 Streptococci에 의한 우식기전에 에리스리톨이 효과적으로 항우식 감미제로서 사용될 수 있다고 생각된다.

Keywords

Acknowledgement

This article is a condensed form of the first author's doctoral thesis. Proofreading performed by Ryu JK.

References

  1. Makinen KK. Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review. Int J Dent. 2010;2010:981072. https://doi.org/10.1155/2010/981072
  2. Makinen KK, Isotupa KP, Kivilompolo T, Makinen PL, Murtomaa S, Petaja J, et al. The effect of polyol-combinant saliva stimulants on S. mutans levels in plaque and saliva of patients with mental retardation. Spec Care Dentist. 2002;22:187-193. https://doi.org/10.1111/j.1754-4505.2002.tb00269.x
  3. Makinen KK, Isotupa KP, Kivilompolo T, Makinen PL, Toivanen J, Soderling E. Comparison of erythritol and xylitol saliva stimulants in the control of dental plaque and mutans streptococci. Caries Res. 2001;35:129-135. https://doi.org/10.1159/000047444
  4. Makinen KK, Soderling E, Hurttia H, Lehtonen OP, Luukkala E. Biochemical, microbiologic, and clinical comparisons between two dentifrices that contain different mixtures of sugar alcohols. J Am Dent Assoc. 1985;111:745-751. https://doi.org/10.14219/jada.archive.1985.0201
  5. Dooms L, Hennebert GL, Verachtert H. Polyol synthesis and taxonomic characters in the genus Moniliella. Antonie Van Leeuwenhoek. 1971;37:107-118. https://doi.org/10.1007/bf02218471
  6. Clark JB, Graham EF, Lewis BA, Smith F. D-mannitol, erythritol and glycerol in bovine semen. J Reprod Fertil. 1967;13:189-197. https://doi.org/10.1530/jrf.0.0130189
  7. de Cock P, Bechert CL. Erythritol. Functionality in noncaloric functional beverages. Pure Appl Chem. 2002;74:1281-1289. https://doi.org/10.1351/pac200274071281
  8. Kawanabe J, Hirasawa M, Takeuchi T, Oda T, Ikeda T. Noncariogenicity of erythritol as a substrate. Caries Res. 1992;26:358-362. https://doi.org/10.1159/000261468
  9. Hanada N. Current understanding of the cause of dental caries. Jpn J Infect Dis. 2000;53:1-5.
  10. Shemesh M, Tam A, Feldman M, Steinberg D. Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res. 2006;341:2090-2097. https://doi.org/10.1016/j.carres.2006.05.010
  11. Janda WM, Kuramitsu HK. Production of extracellular and cell-associated glucosyltransferase activity by Streptococcus mutans during growth on various carbon sources. Infect Immun. 1978;19:116-122. https://doi.org/10.1128/iai.19.1.116-122.1978
  12. Fujiwara T, Sasada E, Mima N, Ooshima T. Caries prevalence and salivary mutans streptococci in 0-2-year-old children of Japan. Community Dent Oral Epidemiol. 1991;19:151-154. https://doi.org/10.1111/j.1600-0528.1991.tb00131.x
  13. Kuramitsu HK. Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med. 1993;4:159-176. https://doi.org/10.1177/10454411930040020201
  14. Assev S, Rolla G. Further studies on the growth inhibition of Streptococcus mutans OMZ 176 by xylitol. Acta Pathol Microbiol Immunol Scand B. 1986;94:97-102. https://doi.org/10.1111/j.1699-0463.1986.tb03026.x
  15. Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun. 1993;61:3811-3817. https://doi.org/10.1128/iai.61.9.3811-3817.1993
  16. Tsumori H, Kuramitsu H. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol Immunol. 1997;12:274-280. https://doi.org/10.1111/j.1399-302x.1997.tb00391.x
  17. Shimamura A, Tsumori H, Mukasa H. Three kinds of extracellular glucosyltransferases from Streptococcus mutans 6715 (serotype g). FEBS Lett. 1983;157:79-84. https://doi.org/10.1016/0014-5793(83)81120-x
  18. Aoki H, Shiroza T, Hayakawa M, Sato S, Kuramitsu HK. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun. 1986;53:587-594. https://doi.org/10.1128/iai.53.3.587-594.1986 Erratum in: Infect Immun. 1986;54:931.
  19. Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun. 1988;56:1999-2005. https://doi.org/10.1128/iai.56.8.1999-2005.1988
  20. Vacca-Smith AM, Bowen WH. Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol. 1998;43:103-110. https://doi.org/10.1016/s0003-9969(97)00111-8
  21. Ooshima T, Matsumura M, Hoshino T, Kawabata S, Sobue S, Fujiwara T. Contributions of three glycosyltransferases to sucrose-dependent adherence of Streptococcus mutans. J Dent Res. 2001;80:1672-1677. https://doi.org/10.1177/00220345010800071401
  22. Yeom CH, Chung J, Jeong TS, Kim S. The effect of xylitol on the expression of gtf gene. J Korean Acad Pediatr Dent. 2004;31:304-310.
  23. Kim JH, Lee YE, Ahn SH, Choi YH, Nam SH, Song KB. Inhibition of glucan synthesis related gene expression of Streptococcus mutans by xylitol treatment. J Korean Acad Pediatr Dent. 2009;36:531-538.
  24. Wennerholm K, Arends J, Birkhed D, Ruben J, Emilson CG, Dijkman AG. Effect of xylitol and sorbitol in chewing-gums on mutans streptococci, plaque pH and mineral loss of enamel. Caries Res. 1994;28:48-54. https://doi.org/10.1159/000261620
  25. Chung HJ, Kim S, Chung J. The effects of sugars on the expression of gtfB and gtfC mRNA. J Korean Acad Pediatr Dent. 2007:34:299-308.
  26. Hwang YS, Lee HJ. The various effects of xylitol as a dietary sugar substitute on improving oral health. J Food Hyg Saf. 2022;37:107-113. https://doi.org/10.13103/JFHS.2022.37.2.107