• Title/Summary/Keyword: errors of zero

Search Result 226, Processing Time 0.032 seconds

Energy Calibration of ESCA Spectrum for the Copper in the Interface of Copper and Cordierite (구리와 코디에라이트와의 접촉점에서 구리에 대한 ESCA 스펙트럼의 에너지 교정)

  • Han, Byoung-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • Electron Spectroscopy for Chemical Analysis(ESCA) allowes the determination of the elemental composition and the bonding state of the surface atomes in the interface between two materials. In the binding energies of ESCA spectrum, there are zero error, voltage scaling error and random error. Accurate analysis of the intensity energy response functions and accurate calibration of the energy scale are essential to use X-ray photoelectron spectron meter. At the results of the calibration of the ESCA spectra in the copper and cordierite (Mg2Al4Si5kO18) interfaces, the errors relative to the copper are -3.03 eV for the zero error -z,-197 ppm for the voltage scaling error -V and 6.9 meV for the random error -R. The method of the calibration is able to apply for the binding energy calibration of the another ESCA spectra.

  • PDF

Design and Performance Analysis of NHC/ZUPT Kalman Filter with Mounting Misalignment Estimation (NHC/ZUPT의 장착 비정렬 추정 칼만필터 설계 및 성능분석)

  • Park, Young-Bum;Kim, Kap-Jin;Park, Jun-Pyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.636-643
    • /
    • 2009
  • NHC means that the velocity of the vehicle in the plane perpendicular to the forward direction is almost zero. The main error source of NHC is the mounting misalignment which is the difference between the body frame of a land vehicle and the sensor frame of an inertial measurement unit. This paper suggests new NHC algorithm that can reduce position errors by real-time estimation of mounting misalignment. Then NHC/ZUPT integrated land navigation system is designed and its performances are analyzed by simulations with van test data. Simulation results show that the proposed NHC/ZUPT land navigation system improves navigation accuracy regardless of misalignment angle and is very useful when SDINS operates stand-alone for land vehicle navigation with large mounting misalignment.

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

Development of the Iron-cored Electronic Zero-Phase Current Transformer (철심 코어형 전자식 영상 변류기 개발)

  • Kang, Yong-Cheol;Jang, Sung-Il;Kim, Yeon-Hee;Park, Jong-Min;Kim, Yong-Kyun;Choi, Jung-Hwan;Lee, Byung-Sung;Song, Il-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.140-141
    • /
    • 2008
  • Generally, an iron-cored instrument transformer has differences between the primary current and the secondary current transformer due to the hysteresis characteristics of the core. The errors of the instrument transformer can be removed by using a compensating algorithm. This paper describes the iron-cored electronic zero-phase current transformer(EZCT) having a compensating algorithm that removes the effects of the hysteresis characteristics of the iron-core. This product composes an iron-cored ZCT and an intelligent electronic device(IED) ported the compensating algorithm. The test results shows that the innovative new product can improve the performance of the conventional ZCT.

  • PDF

Reducing Common-Mode Voltage of Three-Phase VSIs using the Predictive Current Control Method based on Reference Voltage

  • Mun, Sung-ki;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.712-720
    • /
    • 2015
  • A model predictive current control (MPCC) method that does not employ a cost function is proposed. The MPCC method can decrease common-mode voltages in loads fed by three-phase voltage-source inverters. Only non-zero-voltage vectors are considered as finite control elements to regulate load currents and decrease common-mode voltages. Furthermore, the three-phase future reference voltage vector is calculated on the basis of an inverse dynamics model, and the location of the one-step future voltage vector is determined at every sampling period. Given this location, a non-zero optimal future voltage vector is directly determined without repeatedly calculating the cost values obtained by each voltage vector through a cost function. Without utilizing the zero-voltage vectors, the proposed MPCC method can restrict the common-mode voltage within ± Vdc/6, whereas the common-mode voltages of the conventional MPCC method vary within ± Vdc/2. The performance of the proposed method with the reduced common-mode voltage and no cost function is evaluated in terms of the total harmonic distortions and current errors of the load currents. Simulation and experimental results are presented to verify the effectiveness of the proposed method operated without a cost function, which can reduce the common-mode voltage.

Explainable & Safe Artificial Intelligence in Radiology (의료 영상 분석을 위한 설명 가능하고 안전한 인공지능)

  • Synho Do
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.5
    • /
    • pp.834-847
    • /
    • 2024
  • Artificial intelligence (AI) is transforming radiology with improved diagnostic accuracy and efficiency, but prediction uncertainty remains a critical challenge. This review examines key sources of uncertainty-out-of-distribution, aleatoric, and model uncertainties-and highlights the importance of independent confidence metrics and explainable AI for safe integration. Independent confidence metrics assess the reliability of AI predictions, while explainable AI provides transparency, enhancing collaboration between AI and radiologists. The development of zero-error tolerance models, designed to minimize errors, sets new standards for safety. Addressing these challenges will enable AI to become a trusted partner in radiology, advancing care standards and patient outcomes.

Track-following Control under Disk Surface Defect of Optical Disk Drive Systems (광디스크 드라이브의 디스크 표면 결함에 대한 트래킹 제어)

  • Jeong, Dong-Seul;Lee, Joon-Seong;Chung, Chung-Choo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.56-64
    • /
    • 2006
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives to reject disk runout was recently proposed based on both Coprime Factorization(CF) and Zero Phase Error Tracking(ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo systems can detect only racking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Therefore, it is very effective in runout control. Furthermore, this method can be applied to defective optical disk like surface defects on disk. Numerical simulation and experimental result show the proposed method effective.

  • PDF

Robust Servo System for Optical Disk Drive Systems (광디스크 드라이브를 위한 강인 제어기 설계)

  • Park Bum-Ho;Chung Chung Choo;Baek Jong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives was proposed recently based on both Coprime Factorization (CF) and Zero Phase Error Tracking (ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo system can detect only tracking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Numerical simulation results show that the proposed method is effective.

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot with Smooth Curved Welding Path

  • Bui, Trong-Hieu;Chung, Tan-Lam;Kim, Sang-Bong;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1682-1692
    • /
    • 2003
  • This paper proposes an adaptive controller for partially known system and applies to a two-wheeled Welding Mobile Robot (WMR) to track a reference welding path at a constant velocity of the welding point. To design the tracking controller, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as desired. Additionally, a scheme of error measurement is implemented on the WMR to meet the need of the controller. In this paper, the system moments of inertia are considered to be partially unknown parameters which are estimated using update laws in adaptive control scheme. The simulations and experiments on a welding mobile robot show the effectiveness of the proposed controller.

Adaptive Control for Tracking Trajectory of a Two-Wheeled Welding Mobile Robot with Unknown Parameters

  • Bui, Trong Hieu;Chung, Tan-Lam;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.191-196
    • /
    • 2003
  • This paper presents a method to design an adaptive controller for the kinematic model of a two-wheeled welding mobile robot (WMR) with unknown parameters. We propose a nonlinear controller based on the Lyapunov function to enhance the tracking properties of the WMR. The WMR can track any smooth curved welding path at a constant velocity of the welding point. The system has three degrees of freedom including two wheels and one torch slider. Torch slider motion is used for fast tracking. To design the tracking performance, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as possible. The effectiveness of the proposed controller is shown through simulation results.

  • PDF