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1. INTRODUCTION 
 

Nowadays, robots become widely used especially in the 
tasks which are hazardous and difficult for human. In fact, the 
wheeled mobile robots are extensively used in several fields 
where transportation, inspection and operation task are 
required (industry, assembly, mining, safety, and so on). 
Today, the welding process is strongly encouraged for 
improvements in quality, productivity and labor conditions. In 
naval construction, the automation welding process is 
ultimately necessary, since the welding sites are spatially 
enclosed by floors and girders and the welders are exposed to 
severe working conditions. To solve this problem, some 
robotic welding systems have been developed such as the 
wheeled mobile robot. There are many works on tracking 
control method for the wheeled mobile robot in literatures. 
Fierro et al.[1] developed a combined kinetic/torque control 
law using a back-stepping approach. Sarkar et al.[6] proposed a 
nonlinear feedback that guarantees input-output stability and 
Lagrange stability for the overall system with reference paths 
of straight line and circular line. Yun et al.[8] focused on 
kinematics and control of a vehicle with two steerable wheels 
using a dynamic feedback linearization. But these papers did 
not consider the uncertainty of system parameters which 
always exist in mobile robot control problem. Fukao et al.[2] 
dealt with the adaptive tracking control of a two-wheeled 
mobile robot with unknown parameters.  

The applications of the two-wheeled mobile robot for 
welding automation have been studied by Jeon and Kam[3-4]. 
Jeon[3] proposed a seam tracking and motion control of WMR 
for lattice type welding in which were three controllers for 
motion controls: straight locomotion, turning locomotion and 
torch slider. Kam[4] proposed a control algorithm for straight 
welding based on “trial and error” for each step time. Both 
controllers proposed by Jeon and Kam are used only for 
straight path tracking, not for smooth curved path tracking. 

In this paper, the problem of tracking trajectory for the 
kinematic model of a two-wheeled welding mobile robot with 
unknown parameters is considered. We propose a nonlinear 
controller based on the Lyapunov function to enhance the 
tracking properties of the WMR. The distance from WMR’s 
center to driving wheel, and the radius of the driving wheel are 
considered to be unknown parameters which are estimated 
using update laws in adaptive control scheme. To design the 
tracking performance, an error configuration is defined. And a 
simple method for measuring the errors using potentiometers 
is proposed. The controller is designed to drive the error to 
zero as fast as possible. The controlled system is stable in the 

sense of Lyapunov stability. The WMR has a geometrical 
property: the welding point is outside its wheels and is far 
from its center. This property leads to the slow convergence of 
tracking errors in the case of a fixed torch WMR. This 
disadvantage can be overcome by using a controlled torch 
slider. The effectiveness of the proposed controller is shown 
through simulation results with three cases of reference 
welding path were considered: straight path, circular path, and 
smooth curved path. 

 
2. KINEMATIC MODEL OF A WMR 

 
The model of a WMR is presented in Fig. 1. 
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Fig. 1 Configuration of the WMR. 
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Fig. 2 Coordinates of the WMR. 
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The relation of the WMR’s coordinates with its reference 

welding path are shown in Fig. 2. There are three controlled 
motions in this model: two driving wheels and one torch slider 

It is assumed that the wheels roll and do not slip. That is, 
the center point velocity ),( yxC  of WMR must be in the 
direction of the axis of symmetry and the wheels must not slip.  

These constraints are present as follows 
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where, 

  
 ),( yxC  : Cartesian coordinate of WMR’s center, 
 φ  : the heading angle of the WMR, 
 lwrw ωω ,  : the angular velocities of the right and left wheels, 
 b       : the distance from WMR’s center to driving wheel, 
 r       : driving wheel radius. 

 
The ordinary form of a mobile robot with two actuated wheels 
can be derived as follows 
 

























=

















ω
φ
φ

φ

v
y
x

10
0sin
0cos

&

&

&

                (2) 

 
where v  and ω  are the straight and angular velocities of 
the WMR’s center, respectively. 
The relationship between ω,v  and lwrw ωω ,  is 
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The welding point coordinates, ),( ww yxW , and the heading 
angle, wφ , can be calculated from the WMR’s center point: 
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The welding point dynamics can be expressed as follows 
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A reference point, R , moving with the constant velocity of 

rv  on the reference path has the coordinates ),( rr yx , and 
the heading angle, rφ , satisfies the dynamic equation 
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where rφ is defined as the angle between rv
r

and x  
coordinates and rω  is the rate of change of rv

r
 direction. 

 
3. ADAPTIVE CONTROLLER DESIGN 

 
3.1 The parameters br,  are known 

The objective is to design a controller so that the welding 
point W  tracks to the reference point R  at a constant 
velocity rv . We define the tracking errors Teeee ],,[ 321=  
as shown in Fig. 2. 
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A controller is designed to achieve 0→ie  when ∞→t ; 

as the result, the welding point W  tracks to the reference 
point R . The torch is adjusted during welding, that is the 
torch length l  is changeable. The linear velocity of the torch 
slider is an additional system input. The configuration of the 
torch slider is given in Fig. 3. From Eq. (5), the dynamics of 
errors can be expressed as follows 
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The chosen Lyapunov function and its derivative are given as 
 

0
2
1

2
1

2
1 2

3
2
2

2
10 ≥++= eeeV              (9) 

 

3322110 eeeeeeV &&&& ++=                  

   )()sin()cos( 33231 rrr eleveevlve ωωω +−+−+++−= &  (10) 
 
To achieve the negativity of 0V& , we choose ),( ωv  as 
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where 321 ,, kkk  are positive values. 
The parameters br,  are known, from Eq. (11) and Eq. (3), 
we can calculate the necessary velocities of the two driving 
wheels lwrw ωω , . 

 
3.2 The parameters br,  are unknown (Adaptive control) 

When br, are unknown, we design an adaptive controller 
to attain the control objective by using the estimates of br, . 

From Eq. (8) and Eq. (3), we obtain 
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Define  
r
ba

r
a == 21 ;1                          (13) 
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Equation (12) becomes 
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Because br,  are unknown, so 
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where vvd = , ωω =d , 

      21 ˆ,ˆ aa  are estimated values of 21 , aa , respectively. 
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Define estimation error     
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Equation (17) becomes 
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The Lyapunov function is chosen as 
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and its derivative yields 
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The controller is still the same (11), but there is two update 
laws for unknown parameters 
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3.2 Measurement of the errors 

To attain the controllers (11) or (22), the errors 321 ,, eee  
must be measured. We propose a simple measurement scheme 
using potentiometers to obtain these values as shown in Fig. 3. 
Two rollers are placed at points 1O  and 2O . The distance 
between the two rollers, 21 , OO , is chosen according to the 
curve radius of the reference welding path at contact point 
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Fig. 3 Error measurement scheme 

 
The errors as shown in Fig. 3 can be expressed by 
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where sr  is the radius of the roller, and sl  is the length of 



 
the sensor. Hence, we need two sensors for measuring the 
errors, that is, one linear sensor for measuring )( lls − and one 
rotating sensor for measuring the angle between the X  
coordinate of the WMR and rv

r
.  

 
4. SIMULATION RESULTS 

 
To verify the effectiveness of the proposed modeling and 

controller, simulations have been done for a WMR with three 
cases of reference welding path were considered: straight path, 
circular path, and smooth curve path. 

The physical and designed parameters of the WMR are 
chosen as follows mb 105.0= , mr 025.0= , 2.141 =k , 

5.72 =k , 5.33 =k . The welding velocity is smm /5.7 . 
 

Table 1. The numerical values and initial values 
 

Parameter Circular path Smooth curved path 

][ mx r   0.290 0.270 
][ my r  0.500 0.500 

rφ     [deg] -90 0 
][mx w  0.280 0.265 
][my w  0.520 0.495 

wφ    [deg] -75 15 
v     [mm/s] 0 0 
ω     [rad/s] 0 0 

rω    [rad/s] 0 0 
l        [m] 0.15 0.15 

 
The first simulation was done for the WMR to tracks the 

circular path with radius mmR 210= . Simulation results are 
given in Figs. 4-9. At beginning, the WMR adjusts its position 
very fast to reduce the initial errors. As shown in Fig. 4, the 
errors converge to zero after about 1.5 seconds. 
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Fig. 4 Movement of the WMR when tracking circular path. 
 
The velocities of WMR’s center and welding point are 

shown in Fig. 6. The control inputs are given in Fig. 7. 
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    Fig. 5 Tracking errors at beginning. 
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  Fig. 7 Control input: angular velocities of the WMR wheels. 

 
Torch length is given in Fig. 8. Fig. 9 shown the estimation 
errors of parameters. The WMR can track circular welding 
path with good performances. 
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  Fig. 9 Estimation errors. 

 
Figs. 10-20 shown the performances of the WMR when 

tracking the smooth curved path. The case WMR tracks 
straight path is included in this case. At beginning, the 
convergence of the errors is very fast as shown in Fig. 12. The 
errors go to nearly zero after 1.5 seconds. From straight line to 
curved line, there is a sudden change of rω  (from zero to a 
constant); therefore, there are errors as shown in Fig. 13. 
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   Fig. 11 Movement of the WMR. 
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    Fig. 12 Tracking errors at beginning. 
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  Fig. 13 Tracking errors. 

 
The velocities of the WMR and the welding point are given 

in Figs. 14-15. The welding velocity is unaffected. The control 
inputs are given in Figs. 16-17. The torch length is changed as 
shown in Figs. 18-19. Fig. 20 shown the estimation errors. 
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    Fig. 14 Velocities of the WMR and the welding point. 

 

Time (s)
5 25 27022550 75 100 125 150 175 200 250

Ve
lo

ci
ty

 (m
m

/s
)

8

6

4

2

16

10

0

12

14 WMR velocity

welding point velocity

 
      Fig. 15 Velocities of the WMR and the welding point. 
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 Fig. 16 Control input: angular velocities of the WMR wheels. 
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 Fig. 17 Control input: angular velocities of the WMR wheels. 
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  Fig. 18 Torch length. 
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    Fig. 19 Torch length. 
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   Fig. 20 Estimation errors. 

 
Through the above simulation results, we can see that the 

tracking errors have small oscillation, and the welding velocity 
can tracks the reference velocity. This is acceptable for the 
WMR application.  

5. CONCLUSION 
 
In this paper, the problem of tracking trajectory for the 

kinematic model of a two-wheeled welding mobile robot with 
unknown parameters is considered. We proposed a nonlinear 
controller based on the Lyapunov control function to enhance 
the tracking properties of the WMR. The distance from 
WMR’s center to driving wheel, and the radius of the driving 
wheel are considered to be unknown parameters which are 
estimated using update laws in adaptive control scheme. The 
controlled system is stable in the sense of Lyapunov stability 
and the controller is flexible with three adjustable parameters. 
From the simulation results, we can conclusion that the WMR 
with proposed controller can track its reference and can be 
used for tracking any smooth curved path with acceptable 
small errors. 
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