• Title/Summary/Keyword: errors of zero

Search Result 226, Processing Time 0.027 seconds

On the Robust Adaptive Sliding Mode Control of Robot Manipulators (로봇 매니퓨레이터의 강건한 적응 슬라이딩 모드제어)

  • Bae, Jun-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.6
    • /
    • pp.28-36
    • /
    • 2001
  • A robust adaptive sliding mode robot control algorithm is derived, which consists of a feed-forward compensation part and discontinuous control part. The unknown parameters is categorized into two groups, with group containing the parameters estimated on-line, and group containing the parameters not estimated on-line. Then a sliding control term is incorporated into the torque input in order to account for the effects of uncertainties on the parameters not estimated on-line and of disturbances. Moreover, the algorithm is computationally simple, due to an effective exploitation of the structure of manipulator dynamics. It is shown that, despite the existence of the parameter uncertainty and external disturbances, the controller is globally asymptotically stable and guarantees zero tracking errors.

  • PDF

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

On the extended period of a frequency domain method to analyze transient responses

  • Chen, Kui Fu;Zhang, Qiang;Zhang, Sen Wen
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.211-223
    • /
    • 2009
  • Transient response analysis can be conducted either in the time domain, or via the frequency domain. Sometimes a frequency domain method (FDM) has advantages over a time domain method. A practical issue in the FDM is to find out an appropriate extended period, which may be affected by several factors, such as the excitation duration, the system damping, the artificial damping, the period of interest, etc. In this report, the extended period of the FDM based on the Duhamel's integral is investigated. This Duhamel's integral based FDM does not involve the unit impulse response function (UIRF) beyond the period of interest. Due to this fact, the ever-lasting UIRF can be simply set as zero beyond the period of interest to shorten the extended period. As a result, the preferred extended period is the summation of the period of interest and the excitation duration. This conclusion is validated by numerical examples. If the extended period is too short, then the front portion of the period of interest is more prone to errors than the rear portion, but the free vibration segment is free of the wraparound error.

Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique

  • Dung, Ngo Manh;Duy, Vo Hoang;Phuong, Nguyen Thanh;Kim, Sang-Bong;Oh, Myung-Suck
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.283-294
    • /
    • 2007
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundizing function is proposed and applied to a two-wheeled welding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the sliding surface vector including new boundizing function and the adaptation laws are chosen to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system is shown through the Lyapunov method. In addition, a simple way of measuring the errors by potentiometers is introduced. The simulations and experimental results are shown to prove the effectiveness of the proposed controller.

Curve-Modeled Lane Detection based GPS Lateral Error Correction Enhancement (곡선모델 차선검출 기반의 GPS 횡방향 오차보정 성능향상 기법)

  • Lee, Byung-Hyun;Im, Sung-Hyuck;Heo, Moon-Beom;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • GPS position errors were corrected for guidance of autonomous vehicles. From the vision, we can obtain the lateral distance from the center of lane and the angle difference between the left and right detected line. By using a controller which makes these two measurements zero, a lane following system can be easily implemented. However, the problem is that if there's no lane, such as crossroad, the guidance system of autonomous vehicle does not work. In addition, Line detection has problems working on curved areas. In this case, the lateral distance measurement has an error because of a modeling mismatch. For this reason, we propose GPS error correction filter based on curve-modeled lane detection and evaluated the performance applying it to an autonomous vehicle at the test site.

A Study on the Design of Intelligent Cruise Controller (지능 직선주행 제어기 설계에 관한 연구)

  • Rhee, Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.31-35
    • /
    • 2000
  • An nonlinear observer-based longitudinal control law for vehicles is presented in this paper. It is assumed that for vehicle i knows only the distance between vehicle i and the preceding vehicle, i-1. An nonlinear state observer for vehicle I is developed to estimate the velocity and acceleration of the preceding vehicle, i-1. The communication of the position, velocity, and acceleration information is not used in the proposed method. It will be shown by mathematical analysis that the longitudinal control of vehicle can be implemented without an communication of the informations. It will be proven that the observation errors of the nonlinear states converge to zero asymptotically. To show the effectiveness of the proposed method, the simulation results are presented for the longitudinal control of the vehicle.

  • PDF

Comparison of Drift Reduction Methods for Pedestrian Dead Reckoning Based on a Shoe-Mounted IMU

  • Jung, Woo Chang;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.345-354
    • /
    • 2019
  • The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality. An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) magnetometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive performance, that is, each method performs better under the test conditions for which the method was developed than it does under other conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were complementary to each other, and a combination of the two methods yields better estimation performance.

A PWM Phase-Shift Circuit using an RC Delay for Multiple LED Driver ICs

  • Oh, Jae-Mun;Kang, Hyeong-Ju;Yang, Byung-Do
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.484-492
    • /
    • 2015
  • This paper proposes a PWM phase-shift circuit to make that the LED lighting system distributes the channel currents evenly for any number of LED strings by generating evenly phase-shifted PWM signals for multiple LED driver ICs. The evenly distributed channel currents reduce the peak current, the decoupling capacitor size, and EMI noise. The PWM phase-shift circuit makes an arbitrary degree of PWM phase-shift by using a resistor and a capacitor. It measures the RC delay once. It reduces the number of external resistors and capacitors by providing zero and 180 degree phase-shift modes requiring no resistor and capacitor. An LED driver IC with the PWM phase-shift circuit was fabricated with a $0.35{\mu}m$ BCDMOS process. The PWM phase-shift circuit receives a PWM signal of 50 Hz~20 kHz at $f_{CLK}=450kHz$ and it generates a $0{\sim}360^{\circ}$ phase-shifted PWM signal with $R=0{\sim}1.1M{\Omega}$ at C=1 nF and $f_{PWM}=1kHz$. The measured phase errors are 1.74~3.94% due to parasitic capacitances.

Errors in Potentiometric End-Point of Redox Titrations Determined by Zero Second Derivative Method (산화환원 전위차적정에 있어 수치미분법으로 얻은 영 2 차미분 종말점의 오차)

  • Q. Won Choi;Kyong Ryul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-132
    • /
    • 1978
  • The potentiometric end-point of redox titrations determined by nulling the second derivative of the titration curve by numerical differentiation method is analyzed by using an electronic digital computer. The error involved in the method is shown to be dependent on the location of the equivalence point in the titrant addition increment that encompasses the latter. The error increases as the equivalence point moves away from the mid-point of the increment toward a maximum value that is as great as a half of the increment. Therefore, when the numerical differentiation method is used to null the second derivative, the end-point should be compared with the steepest point of the titration curve or diluted titrant should be used in the vicinity of the end-point.

  • PDF

Image-based Visual Servoing Through Range and Feature Point Uncertainty Estimation of a Target for a Manipulator (목표물의 거리 및 특징점 불확실성 추정을 통한 매니퓰레이터의 영상기반 비주얼 서보잉)

  • Lee, Sanghyob;Jeong, Seongchan;Hong, Young-Dae;Chwa, Dongkyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.403-410
    • /
    • 2016
  • This paper proposes a robust image-based visual servoing scheme using a nonlinear observer for a monocular eye-in-hand manipulator. The proposed control method is divided into a range estimation phase and a target-tracking phase. In the range estimation phase, the range from the camera to the target is estimated under the non-moving target condition to solve the uncertainty of an interaction matrix. Then, in the target-tracking phase, the feature point uncertainty caused by the unknown motion of the target is estimated and feature point errors converge sufficiently near to zero through compensation for the feature point uncertainty.