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Abstract

A rtobust adaptive sliding mode robot control algorithm is derived, which consists of a

feed—forward compensation part and discontinuous control part. The unknown parameters is
categorized into two groups, with group containing the parameters estimated on-line, and group
containing the parameters not estimated on-line. Then a sliding control term is incorporated into
the torque input in order to account for the effects of uncertainties on the parameters not estimated
on-line and of disturbances. Moreover, the algorithm is computationally simple, due to an effective
exploitation of the structure of manipulator dynamics. It is shown that, despite the existence of the
parameter uncertainty and external disturbances, the controller is globally asymptotically stable and

guarantees zero tracking errors.

I. Introduction

Advanced manipulators applications often require
effective control design to achieve accurate tracking
of fast desired motions. If the parameters of a
manipulator’s links and its load are known a priori,
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the well-known computed-torque control design can
be used for this purpose, and theoretically guarantees
exact tracking. However, for a manipulator handling
various loads, the inertial parameters of the load
change from time to time without being accurately
known by the controller, and the performance of the
computed-torque controller degrades substantielly or
may even go unstable. This parameter sensitivity is
particularly severe for direct-drive robots and/or fast
manipulator motions. Therefore, there has been active
research sliding mode of robot
manipulators as a robust approach, which intends to

in control
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provide stable and consistent performance in spite of
large parameter uncertainties.

Among developed algorithms using the theory of
VSS, several approaches have been considered.
TPleung, CY.Su, and Q.].Zhoum proposed a new
sliding mode control algorithm which consists of a
discontinuous  compensator and a discontinuous
part. SW.Wijesoma and RJ.Richards[Z]

presented the scheme for robust accurate trajectory

control

tracking of manipulators based on the computed
torque technique and variable structure systems
theory. HYu, LD.Seneviratne, and S.W.EEarles®”
derived a control scheme which combines a direct
adaptive control law with a wvariable structure
adaptive  control robot
manipulator system. CY.Su and Y.Stepanenkom
proposed for an adaptive sliding mode control of
sliding
surface, which can be nonlinear or time-varying.
Q.J.Zhou and CY.su™ developed an adaptive sliding
mode control scheme for accurate tracking control of

law for a nonlinear

robot manipulators by using a general

robotic manipulators, with unknown manipulator and
payload parameters being estimated on-line.

In this paper, a robust adaptive sliding mode
control scheme for accurate trajectory ftracking of
robot manipulators is presented, which consists of a
feed—forward compensation part and discontinuous
control part, with the unknown parameters being
estimated on-line. However, since the algorithm can
be simplified by not explicitly estimating all
unknown parameters, we categorized the unknown
parameters into two groups, with group containing
the estimated
containing the parameters not estimated on-line. A
sliding control term is then incorporated into the

parameters on-line, and group

torque input in order to account for the effects of
uncertainties on the parameters not estimated on-line
and of disturbances. In addition, the algorithm is
computationally  simple, due to an effective
exploitation of the structure of manipulator dynamics.

The layout of paper is as follows: In Section II,

the robot dynamics and its structure properties are
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reviewed. Section OI provides our main results for
designing a robust adaptive sliding mode controller.
Section IV discuss the problem of chattering. To
illustrate the
numerical simulation example is presented in Section
V. Finally, in Section VI, we give brief concluding

performance of the controller, a

remarks.

. Problem formulation

A manipulator is defined as an open kinematic
chain of rigid links. Each degree of freedom of the
manipulator is powered by independent torques.
Using the Lagrangian formulation, the equations of
motion of an n-degree-of-freedom manipulator can

be written as

M@q + Blg, g + @) + Flg, 9 = o (1)

where ¢ is the nX1 vector of joint displacements,
o is the nX1 vector of applied joint torques,
M(q)
manipulator inertia matrix, B(g, @)¢ is the nX1
Glg) is

is the nXn symmetric positive definite
vector of centripetal and Coriolis torques,
the nX1 vector of gravitational torques, F(g,¢q) is
the nx1 vector of Coulomb and viscous friction.

As remarked by several authors([6-8]), the robot
model (1) is characterized by the following structural
properties, which are of importance to our stability
analysis.

Property 1. There
components depending on manipulators parameters

exists a vector 4 with

(masses, moments of inertia, etc.), such that

M@q + Blg, g + Ka) + F(q, 9
= Y(q,q, 96=1(D

where Y(q, ¢, ) is the nXm matrix of functions
called the regressor and 6 is the mX1 vector
containing the unknown manipulator and payload

parameters.
Property 2. The two nXn matrices M(g) and
B(g, ) are not independent. Specidlly, given a
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proper  definition of  B(g,¢), the matrix

(M(g)—2B(q, g)) is skew-symmetric.

It is noted that the choice of parameters in the
above representation is not unique and that the
dimension of the parameters space may depend on
the particular choice of the parameters. In practice,
parameters
importance in the dynamics, in which case we may
choose to make the controller robust to the
uncertainty
explicitly estimate them on-line. Similarly,

geometric parameters may already known with

some may have relatively minor

on these parameters, rather than

some

reasonable precision, or may have been estimated

through sorting devices or wvisual information.
Further, the controller must be robust to residual
time-varying disturbances, such as stiction or torque
ripple, for instance.

Therefore, the algorithm may be simplified by not
explicitly estimating all unknown parameters. We
4 into two
groups, with group 6z containing the parameters

estimated on-line, containing the

categorize the unknown parameters

and group 6z
parameters not estimated on-line. Assume, without
loss of generality, that only the first L unknown
parameters are to be actually estimated :

=[0I o157 3

with
Ok [ 0;] szl.-w,L

O (o7

j=L+1,~,m
and let, corresp()ndinglyls,lo]
Y(q,4,9 = [Yq, 4, @ Yila, ¢, 9] 4

with Yz and Y are respectively the nXL matrix
and nX(m - L) matrix. Using the above result, the
left-hand side of equation (2) can be rewritten as

M(g)q + Blg, 9a + Glg) + F(q,

= YE((I, fL (})0E + Y(q, é, (})GR
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However, although we may already known with
reasonable precision for some geometric parameters,
it is difficult to obtain completely accurate values for
these parameters, because the parameters of (5)
depend on the manipulator structure and payload it
We can only get estimated values of
manipulator payload parameters. Thus if 6z and 65

carries.

are replaced by their estimate 9 and Pk, then
equation (5) can be expressed as

R(@pq+ Ble, 9da + Cl@) + Flg, ©

Ye(q, é, II) 915 + YR(q, (}, Q) 9&

where M (g),
estimates of M{(q),

G(q and F(q, ¢) are
Gl¢) and F(q, 9

B(q, 9),
B(q, @),
respectively.

M. Robust adaptive sliding mode
controller

The control of a manipulator will always be
challenged by the uncertainty as mentioned before
and the disturbances possibly arising from the actual
running of the actuator or some other causes. Hence,
in this section we will consider a more general class
of dynamic models which include input disturbances,

ie,

M@a + Bleg, 9q + G(g)

+ Flg, 9 = dH + dt, q,9)

™

where d(t,q, ¢) 1s the nX1 vector of disturbances
referred to the actuator input.

The adaptive sliding mode design problem is
stated as follows : Given the desired trajectory a4
and ¢, and the sliding suface S7=[s,...,s,]=0,
where

S=q¢()—qdt) + Clg()—q.()) ®

C=diag(cy,...,cn) cp0, i=1, ..,

and with some or all the manipulator pararmneters
being not exactly known, derive a control law for
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the actuator torques and an estimation law for the
unknown parameters such that the manipulator
dD=q()—qlt) are forced to
sliding along the sliding surface S=0, thus
guaranteeing asymptotic convergence of the tracking
after an initial adaptation process.

In order to derive the adaptive sliding mode law,

tracking errors

the following assurmption is required.

Assumption Al : The desired trajectory ¢, is

chosen such that g¢u, ¢4 and g, are all bounded
signals.

applications, the
ith actuator will

Assumption A2 :In many
disturbances introduced into the
usually be dependent only on the activity associated
with the ith joint. Therefore, we henceforth consider
the disturbances d=(d,,....d,) which satisfy the
following :

| dit, q:, g) | <d}

4 )
+d¥ gl +d?l gl

for some d7i=0, i=1,..,n j=1,2,3.
Now the robust adaptive sliding mode control law

is chosen as

="Ye(q, ¢, 4u 92 Oz

. (10)
+ Yelq, 4, a0, a2 Br + 4D
4r(t) = —Ksgn(S) an
Or = —TY Xa, 4, 4o 42)S (12)
where 6z is the LX1 vector containing the

parameters estimated on-line and Py is its estimat
e; 9z is the (m-L)X1 vector containing the
parameters not estimated on-line and 9 is its
estimate; I' is a L x L symmetric positive definite
matrix, usually diagonal, and K= diag(k,, ..., k,) will
be determined in the following.

Theorem :

Consider robotic system defined by (7), with the
sliding surface S=0 described by (8), then S

approaches zero asymptotically provided that the

(333)
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adaptive sliding mode control laws given by (10) -
(12) are used. This in turn implies that the tracking
error between the desired and actual trajectory
converges asymptotically to the zero, ie,

lim{ ¢()~ g4()]1=0 and lim a(D— a.(H]=0.

Proof :
Define the Lyapunov function candidate as

V=%STMS + %9 ir ' o, (13

where Uz = 9z— 6z denotes the parameter estima-
tion error vector.
Differentiating V(8 with respect to time yields

W) =% S"™M(9)S + %STM()S + %STM(g)$

+ BeEr ey + %Y Er B, (14)

Using the Property 2, function (14) becomes
WD=ST(M(a)S + Blg, @) +2Er~' 8, (15

To derive the M(q)S term, differentiating S with
respect to time yields

S=g(—afd + Cla(H—alD) (16)

Multiplying the matrix M(g) to (16) and inserting
(3) gives

M(g)S=d)+d(t,q, )+ ((M(gC
—B(q, 0)d() — M(g)Cq?)

- G9)— F(q, @)~ M(a)a?)

=d)+d(t,q, )~ g, 4, da, 420

=dd+d(tq, )~ [YHa, ¢, 4> 10z

+ YR(Q, é, KI'd, li;j)@R]
Substituting (10) into (17) yields

M(9)S=Y:e(q, 4. 4u, 900k
+ Ylq, 4, 44, a) Dr— Ksgn(S) +d(¢, 4, 9)
—[Yz(a, ¢, qu 420+ Yila, 4, da, 0205

=Yi(q, é, q‘d; (Id) ?95 + Yr(q, d, (I'd, (Id) PR
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— Ksgn(S)+ d(t,q, @) (18

where

Ye(q, li, q.d, qd) PE = YE((I, é, (I.d, qd) PE
— Yi(q, (}, q'd, ‘i;{)&E
Yr(a, 4. 44 42) Or = Yi(a, 4, da, ) Or

— Yr(q, 4,94, 06k

Utilizing the above result, function (15) can be
represented as

V()= ST( Ye(a, 4, 4u, a2 O
— Ksgn(S) + d(t,q, @) + Bla, 9)S) (19)

+ B ET e+ Y K4, 4, da 4DS)

Note that 8z= 8 , since the unknown parameter
estimating on-line 6z are constant.
Thus, substituting (12) (19),

expression of V(¥ is

into the resulting

V(t)=ST(YR(G, a, q'd, qa’) PR
+B(q, )S+ d(¢,q, q) — Ksen(S))

(20)
Now, if we can ensure that V is negative
semidefinite with respect to S(.e. V<0 for S+0, and
V=0 for S=0) at all time by choosing K suitably,
it may be shown that the switching planes are
asymptotically stable from which it may be deduced
that the systern described by (3) is stable and
tracking errors converge to zero. An suitable choice
for K to make V a negative semidefinite function of
S would be

k; ,gﬂ | Yril A;+ ;21 fila, @ s;|

7
+di+d? gl +d¥ gl + 8,

i=1,..,n (21

where

| Bl < Aj,i=L+1,..,m

|Bila, @) < fila, @) .

3l A

(334)
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It is easily verified that the above choice for K
ensures the following desired condition for V.

wH = — ,215"' s:1<0 22)

Expression (22) shows that the output tracking error
converges to the sliding surface S= (8 + C3(H=0.
This in turn imples that ¢($—0 as #—o. Thus
the robust adaptive sliding mode controller defined
by (10) - (12) is globally asymptotically stable and
guarantees zero steady state error for joint positions.
]

Remark 1. From Assumption Al, since the desired
trajectory ¢, is chosen such that ¢4 ¢4 ard gy
are all bounded signals, ¢ and ¢ are also uniformly
bounded. Thus, we may bound the entries of
B(q, ¢), as ik,

Remark 2. The control law given above is similar
to that in®

that the unknown parameters are categorized into

. Differences, however, exist in the fact

two groups, and the disturbances arising from the

actuator or some other causes are explicitly

considered.

IV. Elimination of chattering

The control law given above are discontinuots and
it is well known that synthesis of such control laws
give rise to chattering of trajectories about the
surface S=0. Chattering is undesirable in practice
because it involves high control activity and further
may excite high frequency dynamics neglected in the
course of modeling(such as unmodelled structural
modes, neglected time delays, and the like). To show
that the control law proposed here also can be
remedy this situation, we utilize the chattering
elimination scheme presented in the literature. As

[11,[43,[51,[12]

suggested by several authors

eliminate this

can

problem by smoothing out the



20014 11 EFTLEHXE £ BE SCE FO6K

discontinuous control law in the neighborhood of the
sliding surface. To do this, we replace signim
nonlinearity by a saturation nonlinearity, which is
defined as

1 if S/0=>1
sa(S)={ Slo if —-1<S/0<1
-1 if S/o<—1

where @ is the boundary layer thickness. With this
boundary layer, the robust adaptive sliding mode
control law, for example, given by (10) - (12),

becomes

d8)=Ye(a, 4. 40 92 Ok

+ Yila, ¢, 4a 99 Or + 4D

(23)

AT,':_( j=$+l | YRiil A/+ /ZI fi;'(g; Q)I s@jl

+di+dil gl +d¥ gl +8)sals/ D)

i=1,..,n 24
9 = —I'Y K4, 4, da, 4)S0 (25)
where Sm:( SPlseees S@n)T with soi= s;— @;sat

( s;/ ©;) is a measurement of the algebraic distance
of the current state to the boundary layer. We can
again demonstrate global convergence of the tracking
errors to the sliding surface boundary layer by using
the Lyapunov function

VIO=%S sMS 5+ %9 Ertu: (26

instead of (13), and noting that S,=S outside the
boundary, while S,=0 inside the boundary layer,
which yields

= — gl3i|smi|<0 @n

Definition (26) implies that ¥(¢#)=0 inside the
boundary layer, which shows that (27) is valid
and thus further guarantees that
trajectories eventually converge to the boundary

everywhere

layer.
Remark 3. By using boundary layer, similarly t [13],
S is then guaranteed to remain in the boundary

layers, with corresponding small tracking errors. As

(335)
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like[m, parameter adaptation must then be stopped
when the system trajectories are inside the boundary
layers. This procedure has also the advantage of
avoiding long-term drift of the estimated parameters.

V. Simulation

A computer simulation is performed to evaluate the
performance of control algorithm. Consider the two-
link planar manipulator as shown in Fig.l, carrving a

load of unknown mass.

Xy

3% 1. 2-3= diysdels =24
Fig. 1. Two-link manipulator model.

The dynamics of the manipulator with payload can

be written as
[Mn Mlz][ 41] + [ —Bpa, _B1z(dl+dz)][ {11]
Mo M| g, Bpay 0 a2

RN AR

where

(8]
T2

My = (my+ ma) ¥ + mopd + 2my ri7yc0s(ga) .
M= my 73+ myrirycos(gz) ,

My=My; , Mp=my73,

Byy=myni7psin(ay)

Gy = (my + my)igcos(ay) + marirogeos(a + a2)
Go=myryregcos(q+ ay)

Fi=viq1+ &1sgn( qy)

Fy=vsqyt+ Ersan( qz)

and g is the acceleration of gravity. The unknown
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parameters were considered to be :
0={a B v vy vn & &l

where  e=(m+m)r:, B=myri and y=myrr,
We categorize the unknown parameters 6 into two
groups, Wwith group 0x=[e¢ 8 717 containing the
parameters estimated on-line, and group

6r=1v, v, & &]7 containing the parameters not
estimated on-line.

The parameter values used are sclected as
my=my=0.5kg, 7r,=1m, 7r,=0.8m. Thus the true
values of unknown parameters are eo=1, A=0.32
and r=0.4. The comresponding initial parameter
estimates are selected as 2=0.72, 3=0.25 and
7=0.32. The constant parameters are chosen as
C=3I, I'=0.05, &= 06;=20, Bx=[0.505
1.0 1.0J7 and A=T(0.3 0.3 0.5 0.5]7. The entries of
the matrix B(g, ¢) can be upper-bounded

| Byl <7 a3 <7 as| = fu

| Byl < 7| a1+ a5| < 7| @1 + daf = fz
|Bul <l @] < 0| @] = fn
[Bpl=0=fy

and we select 7=1.
Example 1 : Ideal Case

The desired joint trajectories are chosen to be
as(D=0, q¢,(¢)=0 and the initial position of ¢,(¢#)
is 60° and ¢.(» is —60°. The boundary layer
thickness is chosen to be ®,=0.50;, and
¢£=0.5p2. The selection of p; depends on the
strength of the discontinuities of control efforts. We
choose ;=1 and py;=1 for this simulation.
Example 2. The case which the  external
disturbances exist

In this case, all the conditions are the same as
Example 1. However, we choose external input
disturbances as : di{t, ¢, D= (D+ L a1, dolta, @)
=dy()+ 80, ; where  d{())=dl(H=0.5sin(0.259),
tHi=8=0,0<K3 ; di()=d;()=0.5sin(0.25,
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5H=8=0.5, 3<#6' and the corresponding values

as: di=di=1.0,4=6=0, 0<K3;

d\(tq, @=1.0+0.5| 1}1 |,
dy(t,q, )=1.0+0.5] a1, 3<K8.

As a result from computer simulation, Fig. 2
(a)-(e) illustrate the time trajectories of the position
error  g(?), velocity error a( H, values of s; and
s; , parameter estimates @, B and » , and input
torque (H under no input disturbances, whereas
Fig. 3 (a)-(e) depict the trajectories of the same
signal with input disturbances.

From Fig. 2 and Fig. 3, we see that there does
not exist a significant difference in both tracking
performance. However, Fig. 2(a) and Fig. 3(a) shows
tracking precisions of 0.038rad, 0.063rad for ¢;(¥
and ¢,(9 without input disturbances and 0.058rad
and 0.12rad with input disturbances. These tracking
errors may be reduced by decreasing boundary layef
thickness @,

Although convergence of the trajectory tracking is
in the the
estimates do not converge to their exact value, since
the desired trajectory is not persistently exciting[15].
When the desired trajectory
persistently

guaranteed simulations, parameter

is chosen to be

exciting, simulations do  yield

convergence of the parameter estimation.

VI. Conclusion

A robust adaptive sliding mode control scheme has
been presented for trajectory tracking of robot
manipulators, with unknown parameters being
estimated on-line. The controller is designed based
on a Lyapunov method, which consists of a feed-
forward compensation part and discontinuous control
part. In addition, since the controller is

particular structure of manipulator dynamics and

exploit the

does not explicitly estimate all unknown parameters,
it is especially structurally simple and computatio-
nally fast. The algorithm is able to achieve zero

tracking error in the presence of external
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disturbances and parameter uncertainties. Ongoing
research will be on extending the algorithm to the

combination of learning control.
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