• Title/Summary/Keyword: error-prone PCR

Search Result 21, Processing Time 0.026 seconds

Strain Development for the Over-production of Alkaline Protease from Vibrio metschnikovii by Molecular Evolution (분자진화 기술을 통한 Vibrio metschnikovii 유래 고활성 알칼리성 단백질 분해효소 생산균주 개발)

  • Shin, Yong-Uk;Lee, Gwa-Soo;Jo, Jae-Hyung;Lee, Hyune-Hwan
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.383-388
    • /
    • 2010
  • Alkaline protease-overproducing strains of Vibrio metschnikovii were developed by using the molecular evolution from the classical mutants V. metschnikovii L12-23, N4-8, and KS1. Each vapK (Vibrio alkaline protease K) was obtained from the genomic DNAs of mutants by PCR to carry out the DNA shuffling. The modified vapK-1 obtained by DNA shuffling was used again as a template for the error-prone PCR to make the vapK-2. Both genes were cloned in the plasmid pKF3 to construct the recombinant plasmids which have one or two copies of the modified genes. The recombinant plasmids were back-transformed to V. metschnikovii KS1 to construct recombinant V. metschnikovii that expresses the alkaline protease. About 3.9-fold more protease activity was measured in the strain which has the plasmid containing two copies of vapK-2 when compared to strain KS1. When compared to wild type V. metschnikovii RH530, 43-fold more activity was achieved. Comparison of amino acids among vapK, vapK-1, and vapK-2 revealed that the active sites was highly conserved and not changed. However, many amino acids except the active sites were changed. These results suggested that the changes in amino acids might play an important role in the increase of protease activity by allowing the easy access of substrate to active sites of the protease. The fermentation of alkaline protease from the V. metschnikovii KS1 harboring the plasmid that contains two copies of vapK-1 showed the possibility of this strain to be used as industrial producer.

Characterization of AprE176, a Fibrinolytic Enzyme from Bacillus subtilis HK176

  • Jeong, Seon-Ju;Heo, Kyeong;Park, Ji Yeong;Lee, Kang Wook;Park, Jae-Yong;Joo, Sang Hoon;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • Bacillus subtilis HK176 with high fibrinolytic activity was isolated from cheonggukjang, a Korean fermented soyfood. A gene, aprE176, encoding the major fibrinolytic enzyme was cloned from B. subtilis HK176 and overexpressed in E. coli BL21(DE3) using plasmid pET26b(+). The specific activity of purified AprE176 was 216.8 ± 5.4 plasmin unit/mg protein and the optimum pH and temperature were pH 8.0 and 40℃, respectively. Error-prone PCR was performed for aprE176, and the PCR products were introduced into E. coli BL21(DE3) after ligation with pET26b(+). Mutants showing enhanced fibrinolytic activities were screened first using skim-milk plates and then fibrin plates. Among the mutants, M179 showed the highest activity on a fibrin plate and it had one amino acid substitution (A176T). The specific activity of M179 was 2.2-fold higher than that of the wild-type enzyme, but the catalytic efficiency (kcat/Km) of M179 was not different from the wild-type enzyme owing to reduced substrate affinity. Interestingly, M179 showed increased thermostability. M179 retained 36% of activity after 5 h at 45℃, whereas AprE176 retained only 11%. Molecular modeling analysis suggested that the 176th residue of M179, threonine, was located near the cation-binding site compared with the wild type. This probably caused tight binding of M179 with Ca2+, whichincreased the thermostability of M179.

Change of Bacillus cereus Flavonoid O-Triglucosyltransferase Into Flavonoid O-Monoglucosyltransferase by Error-Prone Polymerase Chain Reaction

  • Jung, Na-Ri;Joe, Eun-Ji;Kim, Bong-Gyu;Ahn, Byoung-Chan;Park, Jun-Cheol;Chong, You-Hoon;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1393-1396
    • /
    • 2010
  • The attachment of sugar to flavonoids enhances their solubility. Glycosylation is performed primarily by uridine diphosphate-dependent glycosyltransferases (UGTs). The UGT from Bacillus cereus, BcGT-1, transferred three glucose molecules into kaempferol. The structural analysis of BcGT-1 showed that its substrate binding site is wider than that of plant flavonoid monoglucosyltransferases. In order to create monoglucosyltransferase from BcGT-1, the error-prone polymerase chain reaction (PCR) was performed. We analyzed 150 clones. Among them, two mutants generated only kaempferol O-monoglucoside, albeit with reduced reactivity. Unexpectedly, the two mutants harbored mutations in the amino acids located outside of the active sites. Based on the modeled structure of BcGT-1, it was proposed that the local change in the secondary structure of BcGT-1 caused the alteration of triglucosyltransferase into monoglucosyltransferase.

The DeveloDment of PaDain which is Extremely Stable to Negative Ionic Environment by Directed Molecular Evolution (방향성 분자진화에 의한 음이온에 안정한 Papain 개발)

  • Kang, Whan-Koo;Hwang, Sun-Duk;Kim, Hyoung-Sik;Jeung, Jong-Sik;Lee, Bheong-Uk
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.394-400
    • /
    • 2006
  • When the papain, which is a sort of Cystein protease, is applied to the outer skin, it decomposes the protein which forms the peeled outer skin and speeds up metabolism. Therefore, it is one of the most important cosmetics compositic which keeps the function of skin normal. When the papain is used in cosmetics with surfactant, the activity of papain is reduced rapidly. In this study, the modified papain with extreme stability negative ionic environment was developed by directed evolution

Probing the Critical Residues for Intramolecular Fructosyl Transfer Reaction of a Levan Fructotransferase

  • Moon, Keum-Ok;Choi, Kyoung-Hwa;Kang, Ho-Young;Oh, Jeong-Il;Jang, Se-Bok;Park, Cheon-Seok;Lee, Jong-Hoon;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1064-1069
    • /
    • 2008
  • Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose-2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.

Increased mRNA Stability and Expression Level of Croceibacter atlanticus Lipase Gene Developed through Molecular Evolution Process

  • Jeong, Han Byeol;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.882-889
    • /
    • 2021
  • In order to use an enzyme industrially, it is necessary to increase the activity of the enzyme and optimize the reaction characteristics through molecular evolution techniques. We used the error-prone PCR method to improve the reaction characteristics of LipCA lipase discovered in Antarctic Croceibacter atlanticus. Recombinant Escherichia coli colonies showing large halo zones were selected in tributyrin-containing medium. The lipase activity of one mutant strain (M3-1) was significantly increased, compared to the wild-type (WT) strain. M3-1 strain produced about three times more lipase enzyme than did WT strain. After confirming the nucleotide sequence of the M3-1 gene to be different from that of the WT gene by four bases (73, 381, 756, and 822), the secondary structures of WT and M3-1 mRNA were predicted and compared by RNAfold web program. Compared to the mean free energy (MFE) of WT mRNA, that of M3-1 mRNA was lowered by 4.4 kcal/mol, and the MFE value was significantly lowered by mutations of bases 73 and 756. Site-directed mutagenesis was performed to find out which of the four base mutations actually affected the enzyme expression level. Among them, one mutant enzyme production decreased as WT enzyme production when the base 73 was changed (T→ C). These results show that one base change at position 73 can significantly affect protein expression level, and demonstrate that changing the mRNA sequence can increase the stability of mRNA, and can increase the production of foreign protein in E. coli.

Isolation and Characterization of Engineered Nucleoside Deoxyribosyltransferase with Enhanced Activity Toward 2'-Fluoro-2'-Deoxynucleoside

  • Yoo, Yeon-Jin;Choi, Kang-Hyun;Kim, Byoung-Kyun;Choi, Si-Sun;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1041-1046
    • /
    • 2022
  • Nucleoside deoxyribosyltransferase (NDT) is an enzyme that replaces the purine or pyrimidine base of 2'-deoxyribonucleoside. This enzyme is generally used in the nucleotide salvage pathway in vivo and synthesizes many nucleoside analogs in vitro for various biotechnological purposes. Since NDT is known to exhibit relatively low reactivity toward nucleoside analogs such as 2'-fluoro-2'-deoxynucleoside, it is necessary to develop an enhanced NDT mutant enzyme suitable for nucleoside analogs. In this study, molecular evolution strategy via error-prone PCR was performed with ndt gene derived from Lactobacillus leichmannii as a template to obtain an engineered NDT with higher substrate specificity to 2FDU (2'-fluoro-2'-deoxyuridine). A mutant library of 214 ndt genes with different sequences was obtained and performed for the conversion of 2FDU to 2FDA (2'-fluoro-2'-deoxyadenosine). The E. coli containing a mutant NDT, named NDTL59Q, showed 1.7-fold (at 40℃) and 4.4-fold (at 50℃) higher 2FDU-to-2FDA conversions compared to the NDTWT, respectively. Subsequently, both NDTWT and NDTL59Q enzymes were over-expressed and purified using a His-tag system in E. coli. Characterization and enzyme kinetics revealed that the NDTL59Q mutant enzyme containing a single point mutation of leucine to glutamine at the 59th position exhibited superior thermal stability with enhanced substrate specificity to 2FDU.

Directed evolution을 이용한 (S)-Ketoprofen ethlyester의 광학분활용 Esterase의 특성 개량

  • Kim, Seung-Beom;Kim, Ji-Hui;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.445-449
    • /
    • 2003
  • As for the purpose, we first introduce an random mutation into wild-type gene to expand a mutation space, and then further recombine the mutant genes by staggered extension process PCR. As a result, we obtained the best clones 6-52 that showed a high activity and stability, from a round of error prone and staggered extension process PCR. The purified enzyme showed a similar pH stability to the wild-type enzyme and reveal a slightly high optimum pH at 12. In the optimum temperature, an identical dependency was also showed and a quite high stability in the thermal stability was obtained. Along with this, the enzyme was also stable at a reaction that supplement with a 15 % of ethanol as an additive. The addition of other solvents and surfactants did not improve the reaction and thus resulted in a similar profile to those of wild-type enzyme. The specific activity on the target compound rac-ketoprofen ethyl ester was calculated to be about 85, 000 unit, and the kinetic constants Km and Vmax were determined to be 0.2 mM and 90 mM/mg-protein/min respectively. The deduced amino acid alignment with the wild type enzyme revealed five mutations at L120P, I208V, T249A, D287H and T357A. Based on these observations, the site directed mutagenesis to delineate the mutagenic effect is under progress.

  • PDF

Enhanced thermostability and substrate susceptibility of esteraseusing directed evolution

  • Choe, Gi-Seop;Kim, Ji-Hui;Kim, Geun-Jung;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.480-484
    • /
    • 2003
  • A stereoselective-hydrolysing enzyme was cloned from Pseudomonas fluorescens KCTC1767 which had high enantiomeric activity toward (S)-ketoprofen ethyl ester. Analyses of typical properties resulted in low thermostability and substrate specificity. A round error-prone PCR and StEP(STaggered Extension Process) was adopted to evolute this character. As a result, the best clone 6-52 was selected which was represented to increased thermostability(40 fold) compared to wild type enzyme in $50^{\circ}C$. Additionally, specific activity toward (S)-ketoprofen ethyl ester and p-nitrophenyl derivatives improved 3 fold and 1.5 fold, respectively. DNA sequence analyses was showed some exchanged amino acid residue that was L120p, 1208v, T249A, D287H and T357A. Which the 120th's leucine substituted for proline was presumed structurally important residue concerning with catalytic activity.

  • PDF

Simultaneous enhancement of thermostability and catalytic activity of phospholipase $A_1$ by evolutionary molecular engineering

  • Song, Jae-Kwang;Rhee, Joon-Shick
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.168-171
    • /
    • 2000
  • The thermal stability and catalytic activity of phospholipase A$_1$ from Serratia sp. MK1 were improved by an evolutionary molecular engineering. Two thermostable mutants were isolated after sequential rounds of error-prone PCR to introduce random mutations and filter-based screening of the resultant mutant library, and identified as having six (mutant TA3) and seven (mutant TA13) amino acid substitutions, respectively. Different types of the substitutions were found in two mutants, resulting in the increase of nonploar residues (mutant TA3) or changes between side chains within polar or charged residues (mutant TA13). The wild-type and mutant enzymes were purified, and the effect of temperature on their stability and catalytic activity was investigated. The T$\sub$m/ values of TA3 and TA13 were increased by 7 and 11$^{\circ}C$, respectively. Thus, evolutionary molecular engineering was found to be an effective and efficient approach to increasing thermostability without compromising enzyme activity.

  • PDF