Browse > Article
http://dx.doi.org/10.4014/jmb.1003.03005

Change of Bacillus cereus Flavonoid O-Triglucosyltransferase Into Flavonoid O-Monoglucosyltransferase by Error-Prone Polymerase Chain Reaction  

Jung, Na-Ri (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Joe, Eun-Ji (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Bong-Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Ahn, Byoung-Chan (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Park, Jun-Cheol (National Institute of Animal Science, Rural Development Administration)
Chong, You-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.10, 2010 , pp. 1393-1396 More about this Journal
Abstract
The attachment of sugar to flavonoids enhances their solubility. Glycosylation is performed primarily by uridine diphosphate-dependent glycosyltransferases (UGTs). The UGT from Bacillus cereus, BcGT-1, transferred three glucose molecules into kaempferol. The structural analysis of BcGT-1 showed that its substrate binding site is wider than that of plant flavonoid monoglucosyltransferases. In order to create monoglucosyltransferase from BcGT-1, the error-prone polymerase chain reaction (PCR) was performed. We analyzed 150 clones. Among them, two mutants generated only kaempferol O-monoglucoside, albeit with reduced reactivity. Unexpectedly, the two mutants harbored mutations in the amino acids located outside of the active sites. Based on the modeled structure of BcGT-1, it was proposed that the local change in the secondary structure of BcGT-1 caused the alteration of triglucosyltransferase into monoglucosyltransferase.
Keywords
Bacillus cereus; flavonoid; glycosyltransferase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Shao, H., X. He, L. Achnine, J. W. Blount, R. A. Dixon, and X. Wang. 2005. Crystal structures of a multifunctional triterpene/ flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17: 3141-3154.   DOI   ScienceOn
2 Gachon, C. M., M. Langlois-Meurinne, and P. Saindrenan. 2005. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci. 10: 542-549.   DOI   ScienceOn
3 Liang, D. and J. Qiao. 2007. Phylogenetic analysis of antibiotic glycosyltransferases. J. Mol. Evol. 64: 342-353.   DOI   ScienceOn
4 Mulichak, A. M., H. C. Losey, W. Lu, Z. Wawrzak, C. T. Walsh, and R. M. Garavito. 2003. Structure of the TDP-epivancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc. Natl. Acad. Sci. U.S.A. 100: 9238- 9243.   DOI   ScienceOn
5 Jeon, Y. M., B. G. Kim, J. H. Kim, Y. Cheong, and J.-H. Ahn. 2009. Enzymatic glycosylation of phenolic compounds using BsGT-3 based on molecular docking simulation. J. Korean Soc. Appl. Biol. Chem. 52: 98-101.   과학기술학회마을   DOI   ScienceOn
6 Jones, P. and T. Vogt. 2001. Glycosyltransferases in secondary plant metabolism: Tranquilizers and stimulant controllers. Planta 213: 164-174.   DOI   ScienceOn
7 Ko, J. H., B. G. Kim, and J.-H. Ahn. 2006. Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiol. Lett. 258: 263-268.   DOI   ScienceOn
8 Mulichak, A. M., H. C. Losey, C. T. Walsh, and R. M. Garavito. 2001. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure 9: 547-557.   DOI   ScienceOn
9 Noguchi, A., A. Saito, Y. Homma, M. Nakao, N. Sasaki, T. Nishino, S. Takahashi, and T. Nakayama. 2007. A UDPglucose: isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings - purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J. Biol. Chem. 282: 23581-23590.   DOI   ScienceOn
10 Osmani, S. A., S. Bak, and B. L. Moller. 2009. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structure and homology modeling. Phytochemistry 70: 325-347.   DOI   ScienceOn
11 Breton, C., L. Snajdova, C. Jeanneau, J. Koca, and A. Imberty. 2006. Structures and mechanisms of glycosyltransferases. Glycobiology 16: 29R-37R.   DOI
12 Bolam, D. N., S. Roberts, M. R. Proctor, J. P. Turkenburg, E. J. Dodson, C. Martinez-Fleites, et al. 2007. The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Proc. Natl. Acad. Sci. U.S.A. 104: 5336-5341.   DOI   ScienceOn
13 Bowles, D., E. K. Lim, B. Poppenberger, and F. E. Vaistij. 2006. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 57: 567-597.   DOI   ScienceOn
14 Brazier-Hicks, M., W. A. Offen, M. C. Gershater, T. J. Revett, E. K. Lim, D. J. Bowles, G. J. Davies, and R. Edwards. 2007. Characterization and engineering of the bifunctional N- and Oglucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl. Acad. Sci. U.S.A. 104: 20238-20243.   DOI   ScienceOn
15 Campbell, J. A., G. J. Davies, V. Bulone, and B. Henrissat. 1997. A classification of nucleotide-diphosphosugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326: 929-939.   DOI
16 Hindie, V., A. Stroba, H. Zhang, L. A. Lopez-Garcia, L. Idrissova, S. Zeuzem, et al. 2009. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nature Chem. Biol. 5: 758-764.   DOI