Browse > Article
http://dx.doi.org/10.4014/jmb.1409.09087

Characterization of AprE176, a Fibrinolytic Enzyme from Bacillus subtilis HK176  

Jeong, Seon-Ju (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University)
Heo, Kyeong (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University)
Park, Ji Yeong (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University)
Lee, Kang Wook (Institute of Agriculture and Life Science, Gyeongsang National University)
Park, Jae-Yong (Department of Food Science and Nutrition, Catholic University of Daegu)
Joo, Sang Hoon (College of Pharmacy, Catholic University of Daegu)
Kim, Jeong Hwan (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.1, 2015 , pp. 89-97 More about this Journal
Abstract
Bacillus subtilis HK176 with high fibrinolytic activity was isolated from cheonggukjang, a Korean fermented soyfood. A gene, aprE176, encoding the major fibrinolytic enzyme was cloned from B. subtilis HK176 and overexpressed in E. coli BL21(DE3) using plasmid pET26b(+). The specific activity of purified AprE176 was 216.8 ± 5.4 plasmin unit/mg protein and the optimum pH and temperature were pH 8.0 and 40℃, respectively. Error-prone PCR was performed for aprE176, and the PCR products were introduced into E. coli BL21(DE3) after ligation with pET26b(+). Mutants showing enhanced fibrinolytic activities were screened first using skim-milk plates and then fibrin plates. Among the mutants, M179 showed the highest activity on a fibrin plate and it had one amino acid substitution (A176T). The specific activity of M179 was 2.2-fold higher than that of the wild-type enzyme, but the catalytic efficiency (kcat/Km) of M179 was not different from the wild-type enzyme owing to reduced substrate affinity. Interestingly, M179 showed increased thermostability. M179 retained 36% of activity after 5 h at 45℃, whereas AprE176 retained only 11%. Molecular modeling analysis suggested that the 176th residue of M179, threonine, was located near the cation-binding site compared with the wild type. This probably caused tight binding of M179 with Ca2+, whichincreased the thermostability of M179.
Keywords
Bacillus subtilis; fibrinolytic enzyme; error-prone PCR; thermostability;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Bryan PN. 2000. Protein engineering of subtilisin. Biochim. Biophys. Acta 1543: 203-222.   DOI   ScienceOn
2 Cadwell RC, Joyce GF. 1994. Mutagenic PCR. Genome Res. 3: S136-S140.   DOI
3 Estell DA, Graycar TP, Wells JA. 1985. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. 260: 6518-6521.
4 Ghasemi Y, Dabbagh F, Ghasemmian A. 2012. Cloning of a fibrinolytic enzyme (subtilisin) gene from Bacillus subtilis in Escherichia coli. Mol. Biotechnol. 52: 1-7.   DOI   ScienceOn
5 Heo K, Cho KM, Lee CK, Kim GM, Shin JH, Kim JS, Kim JH. 2013. Characterization of a fibrinolytic enzyme secreted by Bacillus amyloliquefaciens CB1 and its gene cloning. J. Microbiol. Biotechnol. 23: 974-983.   DOI   ScienceOn
6 Jaouadi B, Aghajari N, Haser R, Bejar S. 2010. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92: 360-369.   DOI   ScienceOn
7 Jeong S-J, Kwon G-H, Chun J, Kim JS, Park C-S, Kwon DY, Kim JH. 2007. Cloning of fibrinolytic enzyme gene from Bacillus subtilis isolated from cheonggukjang and its expression in protease-deficient Bacillus subtilis strain. J. Microbiol. Biotechnol. 17: 1018-1023.
8 Killer M, Ladurner G, Kunz AB, Kraus J. 2010. Current endovascular treatment of acute stroke and future aspects. Drug Discov. Today 15: 640-647.   DOI   ScienceOn
9 Jeong S-J, Cho KM, Lee CK, Kim GM, Shin JH, Kim JS, Kim JH. 2014. Overexpression of aprE2, a fibrinolytic enzyme gene from Bacillus subtilis CH3-5, in Escherichia coli and the properties of AprE2. J. Microbiol. Biotechnol. 24: 969-978.   DOI   ScienceOn
10 Jo H-D, Kwon G-H, Park J-Y, Cha J, Song Y-S, Kim JH. 2011. Cloning and overexpression of aprE3-17 encoding the major fibrinolytic protease of Bacillus licheniformis CH 3-17. Biotechnol. Bioproc. Eng. 16: 352-359.   DOI   ScienceOn
11 Khurana J, Singh R, Kaur J. 2011. Engineering of Bacillus lipase by directed evolution for enhanced thermal stability: effect of isoleucine to threonine mutation at protein surface. Mol. Biol. Rep. 38: 2919-2926.   DOI
12 Kim GM, Lee AR, Lee KW, Park J-Y, Chun J, Cha J, et al. 2009. Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from cheonggukjang. J. Microbiol. Biotechnol. 19: 997-1004.   DOI
13 Kim S-H, Choi N-S. 2000. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from doen-jang. Biosci. Biotechnol. Biochem. 64: 1722-1725.   DOI   ScienceOn
14 Kim SB, Lee DW, Cheigh CI, Choe EA, Lee SJ, Hong YH, et al. 2006. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, tempeh. J. Ind. Microbiol. Biotechnol. 33: 436-444.   DOI
15 Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, et al. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from chungkook-jang. Appl. Environ. Microbiol. 62: 2482–2488.
16 Liu B, Zhang J, Fang Z, Gu L, Liao X, Du G, Chen J. 2013. Enhanced thermostability of keratinase by computational design and empirical mutation. J. Ind. Microbiol. Biotechnol. 40: 697-704.   DOI   ScienceOn
17 Kim YW, Choi JH, Kim JW, Park C, Kim JW, Cha H, et al. 2003. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microbiol. 69: 4866-4874.   DOI
18 Martinez R, Jakob F, Tu R, Siegert P, Maurer K-H, Schwaneberg U. 2012. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Biotechnol. Bioeng. 110: 711-720.   DOI   ScienceOn
19 Kwon GH, Lee HA, Park JY, Kim JS, Lim J, Park CS, et al. 2009. Development of a RAPD-PCR method for identification of Bacillus species isolated from cheonggukjang. Int. J. Food Microbiol. 129: 282-287.   DOI   ScienceOn
20 Lee S-Y, Yu S-N, Choi H-J, Kim K-Y, Kim S-H, Choi Y-L, et al. 2013. Cloning and characterization of a thermostable and alkaline fibrinolytic enzyme from a soil metagenome. Afr. J. Biotechnol. 12: 6389-6399.   DOI
21 McPhalenf CA, James MNG. 1988. Structural comparison of two serine proteinase-protein inhibitor complexes: Eglin-C-Subtilisin Carlsberg and CI-2-Subtilisin Novo. Biochemistry 27: 6582-6598.   DOI   ScienceOn
22 Nakamura T, Yamagata Y, Ichishima E. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56: 1869-1871.   DOI   ScienceOn
23 Pantoliano MW, Whitlow M, Wood JF, Rollence ML, Finzel BC, Gilliland GL, et al. 1988. The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Biochemistry 27: 8311-8317.   DOI   ScienceOn
24 Stephens DE, Singh S, Permaul K. 2009. Error-prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability. FEMS Microbiol. Lett. 293: 42-47.   DOI   ScienceOn
25 Peng Y, Huang Q, Zhang R-H, Zhang Y-Z. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Phys. B 134: 45-52.   DOI   ScienceOn
26 Tina KG, Bhadra R, Srinivasan N. 2007. PIC: protein interactions calculator. Nucleic Acids Res. 35: W473-W476.   DOI
27 Peng Y, Yang XJ, Xiao L, Zhang YZ. 2004. Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis. Res. Microbiol. 155: 167-173.   DOI   ScienceOn
28 Schwede T. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385.   DOI   ScienceOn
29 Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111.   DOI   ScienceOn
30 Uehara R, Angkawidjaja C, Koga Y, Kanaya S. 2013. Formation of the high-affinity calcium binding site in prosubtilisin E with the insertion sequence IS1 of Pro-Tk-subtilisin. Biochemistry 52: 9080-9088.   DOI   ScienceOn
31 Wang C, Du M, Zheng D, Kong F, Zu G, Feng Y. 2009. Purification and characterization of nattokinase from Bacillus subtilis Natto B-12. J. Agric. Food Chem. 57: 9722-9729.   DOI   ScienceOn
32 Yeo WS, Seo MJ, Kim MJ, Lee HH, Kang BW, Park JU, et al. 2011. Biochemical analysis of a fibrinolytic enzyme purified from Bacillus subtilis strain A1. J. Microbiol. 49: 376-380.   DOI
33 Bryan P, Alexander P, Strausberg S, Schwarz F, Lan W, Gilliland G, Gallagher DT. 1992. Energetics of folding subtilisin BPN’. Biochemistry 31: 4937-4945.   DOI   ScienceOn
34 Yin LJ, Lin HH, Jiang ST. 2010. Bioproperties of potent nattokinase from Bacillus subtilis YJ1. J. Agric. Food Chem. 58: 5737-5742.   DOI   ScienceOn
35 Dower WJ, Miller JF, Ragsdale CW. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127-6145.   DOI
36 Agrebi R, Haddar A, Hmidet N, Jellouli K, Manni L, Nasri M. 2009. BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: purification, biochemical and molecular characterization. Process Biochem. 44: 1252-1259.   DOI   ScienceOn
37 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn