• Title/Summary/Keyword: error motion

Search Result 1,368, Processing Time 0.027 seconds

Novel Motion Estimation Technique Based Error-Resilient Video Coding (새로운 움직임 예측기법 기반의 에러 내성이 있는 영상 부호화)

  • Hwang, Min-Cheol;Kim, Jun-Hyung;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.108-115
    • /
    • 2009
  • In this paper, we propose a novel true-motion estimation technique supporting efficient frame error concealment for error-resilient video coding. In general, it is important to accurately obtain the true-motion of objects in video sequences for effectively recovering the corrupted frame due to transmission errors. However, the conventional motion estimation (ME) technique, which minimizes a sum of absolute different (SAD) between pixels of the current block and the motion-compensated block, does not always reflect the true-movement of objects. To solve this problem, we introduce a new metric called an absolute difference of motion vectors (ADMV) which is the distance between motion vectors of the current block and its motion-compensated block. The proposed ME method can prevent unreliable motion vectors by minimizing the weighted combination of SAD and ADMV. In addition, the proposed ME method can significantly improve the performance of error concealment at the decoder since error concealment using the ADMV can effectively recover the missing motion vector without any information of the lost frame. Experimental results show that the proposed method provides similar coding efficiency to the conventional ME method and outperforms the existing error-resilient method.

Motion Estimation Using the Relation Between Rate and Distortion (부호화율과 일그러짐의 관계를 이용하는 움직임 추정)

  • 양경호;김태정;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.66-73
    • /
    • 1992
  • This paper proposes a new motion estimation algorithm which takes into account the rate-distortion relation in encoding motion compensated error images. The proposed algorithm is based on a new block-matching criterion which is the function of not only the mean squared block-matching error but also the code length for the entropy coded motion vector. The proposed algorithm optimizes the trade-off between the bit rate for motion compensated error images and the bit rate for the motion vectors. Simulation results show that in the motion compensated image coding the proposed motion estimator improves the overall performance by 0.5 dB when compared to the motion estimator which uses MSE only.

  • PDF

Experimental Verification on the Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.62-68
    • /
    • 2004
  • Effectiveness of a corrective machining algorithm, which can construct the proper machining information to improve motion errors utilizing measured motion errors, is verified experimentally in this paper, Corrective machining process is practically applied to single and double side hydrostatic bearing tables. Lapping process is applied as a machining method. The machining information is obtained from the measured motion errors by applying the algorithm, without any information on the rail profile. In the case of the single-side table, after 3 times of corrective remachining, linear and angular motion errors are improved up to 0.13 $\mu\textrm{m}$ and 1.40 arcsec from initial error of 1.04 $\mu\textrm{m}$ and 22.71 arcsec, respectively. In the case of the double-side table, linear and angular motion error are improved up to 0.07 /$\mu\textrm{m}$ and 1.42 arcsec from the initial error of 0.32 $\mu\textrm{m}$ and 4.14 arcsec. The practical machining process is performed by an unskilled person after he received a preliminary training in machining. Experimental results show that the corrective machining algorithm is very effective and easy to use to improve the accuracy of hydrostatic tables.

Motion Compensation Based on Signal Processing Method for Airborne SAR

  • Song, Won-Gyu;Shin, Hee-Sub;Lee, Ho-Jin;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1199-1201
    • /
    • 2005
  • In the synthetic aperture radar (SAR) system, the motion error is the main phase error sources and the motion compensation is very important. The phase gradient autofocus (PGA) is a state of art technique for phase error correction of SAR. It exploits the redundancy of the phase-error information among range bins by selecting the strongest scatter for each range bin and synthesizes them. The motivation of this paper is based on the observation that the redundancy of phase error is also among the cross-range direction. Moreover, the proposed method applies the weighting function to better utilize the phase error information. The validity of the proposed scheme for PGA is tested with some numerical simulation.

  • PDF

Kalman filter based Motion Vector Recovery for H.264 (H.264 비디오 표준에서의 칼만 필터 기반의 움직임벡터 복원)

  • Ko, Ki-Hong;Kim, Seong-Whan
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.801-808
    • /
    • 2007
  • Video coding standards such as MPEG-2, MPEG-4, H.263, and H.264 transmit a compressed video data using wired/wireless communication line with limited bandwidth. Because highly compressed bit-streams is likely to fragile to error from channel noise, video is damaged by error. There have been many research works on error concealment techniques, which recover transmission errors at decoder side [1, 2]. We designed an error concealment technique for lost motion vectors of H.264 video coding. In this paper, we propose a Kalman filter based motion vector recovery scheme, and experimented with standard video sequences. The experimental results show that our scheme restores original motion vector with more precision of 0.91 - 1.12 on average over conventional H.264 decoding with no error recovery.

Accuracy Simulation of the Precision Linear Motion Systems (직선운동 시스템의 정밀도 시뮬레이션 기술)

  • Oh, Jeong-Seok;Khim, Gyung-Ho;Park, Chun-Hong;Chung, Sung-Jong;Lee, Sun-Kyu;Kim, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.275-284
    • /
    • 2011
  • The accuracy simulation technology of linear motion system is introduced in this paper. Motion errors and positioning errors are simulated using informations on the design parameters of elements of linear motion system. 5 Degree-of-freedom motion error analysis algorithm utilizing the transfer function method and positioning error analysis algorithm which are main frame of accuracy simulation are introduced. Simulated motion errors are compared with experimental results for verifying the effectiveness. Then, using the proposed algorithms, simulation is performed to investigate the effects of ballscrew and linear motor on the motion errors. Finally, the influence of feedback sensor position on the positioning error is also discussed.

Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical Tomotherapy (나선형 토모테라피에서 불규칙적인 호흡으로 발생되는 움직임에 의한 선량 오차에 대한 연구)

  • Cho, Min-Seok;Kim, Tae-Ho;Kang, Seong-Hee;Kim, Dong-Su;Kim, Kyeong-Hyeon;Cheon, Geum Seong;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.119-126
    • /
    • 2015
  • The purpose of this study is to analyze motion-induced dose error generated by each tumor motion parameters of irregular tumor motion in helical tomotherapy. To understand the effect of the irregular tumor motion, a simple analytical model was simulated. Moving cases that has tumor motion were divided into a slightly irregular tumor motion case, a large irregular tumor motion case and a patient case. The slightly irregular tumor motion case was simulated with a variability of 10% in the tumor motion parameters of amplitude (amplitude case), period (period case), and baseline (baseline case), while the large irregular tumor motion case was simulated with a variability of 40%. In the phase case, the initial phase of the tumor motion was divided into end inhale, mid exhale, end exhale, and mid inhale; the simulated dose profiles for each case were compared. The patient case was also investigated to verify the motion-induced dose error in 'clinical-like' conditions. According to the simulation process, the dose profile was calculated. The moving case was compared with the static case that has no tumor motion. In the amplitude, period, baseline cases, the results show that the motion-induced dose error in the large irregular tumor motion case was larger than that in the slightly irregular tumor motion case or regular tumor motion case. Because the offset effect was inversely proportion to irregularity of tumor motion, offset effect was smaller in the large irregular tumor motion case than the slightly irregular tumor motion case or regular tumor motion case. In the phase case, the larger dose discrepancy was observed in the irregular tumor motion case than regular tumor motion case. A larger motion-induced dose error was also observed in the patient case than in the regular tumor motion case. This study analyzed motion-induced dose error as a function of each tumor motion parameters of irregular tumor motion during helical tomotherapy. The analysis showed that variability control of irregular tumor motion is important. We believe that the variability of irregular tumor motion can be reduced by using abdominal compression and respiratory training.

Motion Vector Recovery Using Extraction of homogeneous motion blocks (동일 움직임 블록 검출을 이용한 움직임 벡터 복원 기법)

  • 김정현;박성찬;이귀상
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.109-112
    • /
    • 2000
  • Bitstrems corrupted by channel errors are not only difficult to be decoded but also propagate error to other part of the bitstreams when highly compressed video is transmitted over channels with noise such as mobile communication channels. In this paper, error concealment algorithm performed in decoder is proposed when errors occur for transmission. Proposed algorithm searches moving area with homogeneous movement in neighbored blocks when motion vectors are damaged, then recovers motion vectors of missing blocks considering where missing blocks are belong to. Experiment result shows that proposed algorithm exhibits better performance in PSNR than existing error concealment method.

  • PDF

A Study on MBES Error Data Removing using Motion Sensor (Motion Sensor를 이용한 MBES 오측자료 제거 연구)

  • Kang, Moon-Kwon;Choi, Yun-Soo;Chang, Min-Chol;Yoon, Ha-Su
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Sounding data is the essential source for the safety of ships navigation system, and fundamental to the reasonable usage and maintenance of the ocean as well. As IT tech, positioning equipment such as GPS and INS, echo sounder are developed, recently, the precise submarine topography database bas been built by Multi-Beam Echo Sounder. However, MBES data includes some inevitable error caused by several factor, and some data have errors where the terrain is wobble. The error, which causes the $moir\acute{e}$ pattern error is the main factor hindering the accuracy of MBES data results, and therefore it is necessary to figure out the main cause of the error for the improvement of the accuracy by removing error data. On this research, the main cause of the error data is studied by analyzing motion sensor value of data including the $moir\acute{e}$ pattern error. Thus, as the result of examination, it turns out that the $moir\acute{e}$ pattern error is related to the standard deviation of Roll, and error data values are results of the non-correspondence between Swath data and Roll values caused by the drastic change of Roll values. Accordingly, the error data is removed by comparing between the gradient of Swath data and Roll values. Finally, as the result of removing error data, it is expected to be able to estimate the quality of MBES using the standard deviation of Motion sensor's Roll value, and calculate the additive error factor, which minimize non-corresponding data, and also this research must be contributed to improve the accuracy of sounding for small vessels with lots of motion in the bad circumstance for navigation.

Development of the Measuring System of the Rotational Accuracy of main Spindles (주축의 회전정도 측정시스템의 개발)

  • Sin, Yeong-Jae;Park, Jong-Gwon;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.21-26
    • /
    • 1990
  • In order to satisfy the industrial requirements to measure the rotational error motion of main spindles and to find out the source of the error motion, some measuring systems were made. Their measuring principle are based on the 3-point roundness measurement. In these measuring systems, the measurements are processed by digital calculation technique and the form error and the rotational error motion of main spindles are spearated. In the present paper, the principle of 3-point metnod is introduced and some application examples are shown.

  • PDF