• Title/Summary/Keyword: error characteristics

Search Result 3,476, Processing Time 0.033 seconds

Influence of Manufacturing Errors on the Dynamic Characteristics of Planetary Gear Systems

  • Cheon, Gill-Jeong;Park, Robert G. er
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.606-621
    • /
    • 2004
  • A dynamic analysis using a hybrid finite element method was performed to characterize the effects of a number of manufacturing errors on bearing forces and critical tooth stress in the elements of a planetary gear system. Some tolerance control guidelines for managing bearing forces and critical stress are deduced from the results. The carrier indexing error for the planet assembly and planet runout error are the most critical factors in reducing the planet bearing force and maximizing load sharing, as well as in reducing the critical stress.

Time Series Prediction Using a Multi-layer Neural Network with Low Pass Filter Characteristics (저주파 필터 특성을 갖는 다층 구조 신경망을 이용한 시계열 데이터 예측)

  • Min-Ho Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • In this paper a new learning algorithm for curvature smoothing and improved generalization for multi-layer neural networks is proposed. To enhance the generalization ability a constraint term of hidden neuron activations is added to the conventional output error, which gives the curvature smoothing characteristics to multi-layer neural networks. When the total cost consisted of the output error and hidden error is minimized by gradient-descent methods, the additional descent term gives not only the Hebbian learning but also the synaptic weight decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and additional computational requirements to the standard error back-propagation is negligible. From the computer simulation of the time series prediction with Santafe competition data it is shown that the proposed learning algorithm gives much better generalization performance.

  • PDF

Covariance analysis of strapdown INS considering characteristics of gyrocompass alignment errors (자이로 컴파스 얼라인먼트 오차특성을 고려한 스트랩다운 관성항법장치의 상호분산해석)

  • 박흥원;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.34-39
    • /
    • 1993
  • Presented in this paper is a complete error covariance analysis for strapdown inertial navigation system(SDINS). We have found that in SDINS the cross-coupling terms in gyrocompass alignment errors can significantly influence the SDINS error propagation. Initial heading error has a close correlation with the east component of gyro bias erro, while initial level tilt errors are closely related to accelerometer bias errors. In addition, pseudo-state variables are introduced in covariance analysis for SDINS utilizing the characteristics of gyrocompass alignment errors. This approach simplifies the covariance analysis because it makes the initial error covariance matrix to a diagonal form. Thus a real implementation becomes easier. The approach is conformed by comparing the results for a simplified case with the covariance analysis obtained from the conventional SDINS error model.

  • PDF

Analysis on LGP of LCD Backlight/Frontlight

  • Sah, Jong-Youb;Park, Jong-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.698-700
    • /
    • 2003
  • LGP (Light-Guide Panel) of TFT-LCD Backligh/Frontlight is one of the major components which affect on the product quality of LCD. Since the brightness distribution of LGP is sensitive to the process error in manufacturing, the optical characteristics such as reflection and absorption of LGP pattern should be modeled including the process error. LGP is developed by using the fast and reliable design technology, which uses the concept of the inverse-design, makes the model on the characteristics of uncertainty in the manufacturing process, and designs the dispersion pattern analytically without try-and-error by using an artificial intelligence. The PEA(Process-Error-Adaptive) design gives the best solution in handling the process error. The offset of target in feedback system makes such the best pattern design possible that the brightness distribution is nearly same (more than 90%) with target in regardless of the miscellaneous errors in mass production. The present design method has been also applied to frontlight and multi-side-lamp(eg., four-side-four-lamp) backlight.

  • PDF

Basic Characteristics of an Active Controlled Capillary for Compensating the Error Motion of Hydrostatic Guideways (유정압안내면 운동오차보정용 능동제어모세관의 기본특성)

  • 송영찬;박천홍;이후상;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.662-667
    • /
    • 1996
  • For compensating the error motion of hydrostatic guideways, the structure and the theoretical design method of ACC(Active Controlled Capillary) are proposed. The maximum controllable range, micro step response and dynamic characteristics of ACC are analyzed experimentally for verifing the availability. The experimental results showed that by the use of ACC, the error motion within 2.7${\mu}{\textrm}{m}$ of a hydrostatic guideway can be compensated with the resolution of 27nm, 1/100 of uncontolled error, and the frequency band of 5.5Hz. From these results, it Is confirmed that the ACC is very effect to improve the moving accuracy of high or ultra precision hydrostatic guideways.

  • PDF

Basic Characteristics of an Active Controlled Capillary for Compensating the Error Motion of Hydrostatic Guideways (유정압안내면 운동오차보정용 능동제어모세관의 기본특성)

  • Song, Y.C.;Park, C.H.;Kim, S.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.130-136
    • /
    • 1997
  • For compensating the error motion of hydrostatic guideways, we introduce a way that the clearance of table is actively controlled corresponding to the amount of error with the variable capillary. The structure and the theoretical design method of active controlled capillary using piezo actuator, named ACC, are proposed in this paper. Basic characteristics such as the maximum controllable range, micro step response and available dynamic bandwidth are tested for confirmation of structural suitability of ACC, and these characteristics are also tested on the table mounted with ACC for verifying the availability. The experimental result showed that by the use of ACC, the error motion within 2.7 .mu. m of a hydrostatic guideway can be compensated with the resolution of 2.7nm, 1/100 contollable range, and the frequency bandwidth of 5.5 Hz. From these results, it is confirmed that the ACC is very effective to improve the motion accuracy of high or ultra precision hydrostatic guideways.

  • PDF

An Adaptive BTC Algorithm Using the Characteristics of th Error Signals for Efficient Image Compression (차신호 특성을 이용한 효율적인 적응적 BTC 영상 압축 알고리듬)

  • 이상운;임인칠
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.4
    • /
    • pp.25-32
    • /
    • 1997
  • In this paper, we propose an adaptive BTC algorithm using the characteristics of the error signals. The BTC algorithm has a avantage that it is low computational complexity, but a disadvantage that it produces the ragged edges in the reconstructed images for th esloping regions beause of coding the input with 2-level signals. Firstly, proposed methods classify the input into low, medium, and high activity blocks based on the variance of th einput. Using 1-level quantizer for low activity block, 2-level for medium, and 4-level for high, it is adaptive methods that reduce bit rates and the inherent quantization noises in the 2-level quantizer. Also, in case of processing high activity block, we propose a new quantization level allocation algorithm using the characteristics of the error signals between the original signals and the reconstructed signals used by 2-level quantizer, in oder that reduce bit rates superior to the conventional 4-level quantizer. Especially, considering the characteristics of input block, we reduce the bit rates without incurrng the visual noises.

  • PDF

Motion Error Compensation Method for Hydrostatic Tables Using Actively Controlled Capillaries

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • To compensate for the motion errors in hydrostatic tables, a method to actively control the clearance of a bearing corresponding to the amount of error using actively controlled capillaries is introduced in this paper. The design method for an actively controlled capillary that considers the output rate of a piezo actuator and the amount of error that must be corrected is described. The basic characteristics of such a system were tested, such as the maximum controllable range of the error, micro-step response, and available dynamic bandwidth when the capillary was installed in a hydrostatic table. The tests demonstrated that the maximum controllable range was $2.4\;{\mu}m$, the resolution was 27 nm, and the frequency bandwidth was 5.5 Hz. Simultaneous compensation of the linear and angular motion errors using two actively controlled capillaries was also performed for a hydrostatic table driven by a ballscrew and a DC servomotor. An iterative compensation method was applied to improve the compensation characteristics. Experimental results showed that the linear and angular motion errors were improved to $0.12{\mu}m$ and 0.20 arcsec, which were about $1/15^{th}$ and $1/6^{th}$ of the initial motion errors, respectively. These results confirmed that the proposed compensation method improves the motion accuracy of hydrostatic tables very effectively.

A Modified Klobuchar Model Reflecting Characteristics of Ionospheric Delay Error in the Korea Region

  • Dana Park;Young Jae Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • When calculating the user's position using satellite signals, the signals originating from the satellite pass through the ionosphere and troposphere to the user. In particular, the ionosphere delay error that occurs when passing through the ionosphere delays when the signal is transmitted, generating a pseudorange error and position error at a large rate. Therefore, to improve position accuracy, it is essential to correct the ionosphere layer error. In a receiver capable of receiving dual frequency, the ionosphere error can be eliminated through a double difference, but in a single frequency receiver, an ionosphere correction model transmitted from a Global Navigation Satellite System (GNSS) satellite is used. The popularly used Klobuchar model is designed to improve performance globally. As such, it does not perform perfectly in the Korea region. In this paper, the characteristics of the delay in the ionosphere in the Korean region are identified through an analysis of 10 years of data, and an improved ionosphere correction model for the Korean region is presented using the widely employed Klobuchar model. Through the proposed model, vertical position error can be improved by up to 40% relative to the original Klobuchar model in the Korea region.

An Analysis of Human Error Mode and Type in the Railway Accidents and Incidents (철도 사고 및 장애의 인적오류 유형 분석)

  • Ko, Jong-Hyun;Jung, Won-Dea;Kim, Jae-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.66-71
    • /
    • 2007
  • Human error is one of the major contributors to the railway accidents or incidents. In order to develop an effective countermeasure to remove or reduce human errors, a systematic analysis should be preferentially performed to identify their causes, characteristics, and types of human error induced in accidents or incidents. This paper introduces a case study for human error analysis of the railway accidents and incidents. For the case study, more than 1,000 domestic railway accidents or incidents that happened during the year of 2004 have been investigated and a detailed error analysis was performed on the selected 90 cases, which were obviously caused by human error. This paper presents a classification structure for human error analysis, and summarizes the analysis results such as causes of the events, error modes and types, related worker, and task type.