• Title/Summary/Keyword: erosion basin

Search Result 129, Processing Time 0.024 seconds

Development of Indicators for Dredging Evaluation and Form on Erosion Control Dam Using the Delphi Technique and AHP Analysis (델파이 기법과 AHP를 이용한 중력식 사방댐 준설 평가지표 및 조사야장 개발)

  • Seo, Junpyo;Lee, Changwoo;Woo, Choongshik;Lee, Heonho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.6
    • /
    • pp.1-15
    • /
    • 2014
  • A dredging on erosion control dam has been enforced without evaluation the factors that affect the dredging. In addition, there is the negative effect much more than positive effect by dredging on erosion control dam. Therefore, this study was carried out to develop evaluation indicators and to suggest fieldbook in order to determine whether sand deposits at erosion control dam should be dredged up or not. The most important six evaluation indicators that can decide to dredge up at erosion control dam were obtained from three round delphi technique and were selected in the following order: the current sand deposit ratio(0.339), existence of cultivated land and house downstream(0.276), the slope of streambed(0.162), the amount of movable soil and gravel(0.118), the history of any disasters(0.063), the basin area(0.043). The weighted score for each evaluation indicator were acquired from AHP analysis with respect to the degree of importance and then the modified weighted score for actual measurements were classified as three categories: large(2.53), medium(1.60) and small(1.01). Based on delphi technique, erosion control dam dredging evaluation fieldbook introduced the four evaluation indicators out of the total six evaluation indicators and two low effected evaluation indicators were excluded. This results showed that the values for reliability analysis and consistency ratio were acceptable.

Comparative Evaluation of Muddy Water Occurrence Possibility in Dam Reservoir Using GIS (GIS를 이용한 댐 저수지의 흙탕물 발생 가능성 비교 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong;Park, Jin-Hyeog
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.94-106
    • /
    • 2011
  • The muddy water occurrence possibility of reservoir were analyzed by considering GIS based soil erosion model, sediment delivery ratio and effective reservoir capacity. For the purpose, the weakness factors for the establishment of countermeasures of basin were analyzed by evaluating input factors of RUSLE model based on spatial data such as DEM, soil map, landcover map and so on. The potential of soil erosion was estimated considering highland upland. The sediment yields of Chungju-Dam and Soyanggang-Dam showed the highest result in sediment yield using sediment delivery ratio with considering basin area. The sediment concentration of Imha-Dam and Chungju-Dam showed the highest value as 0.791 $kg/m^3/yr$ and 0.526 $kg/m^3/yr$ respectively in sediment concentration with considering effective reservoir capacity. Especially, sediment yield of Imha-Dam was about 2.36 times lower than Soyanggang-Dam, but the sediment concentration was 1.90 times higher preferably, because the effective reservoir capacity of Imha-Dam was about 4.48 times lower. This study calculated sediment concentration using the 10 years mean rainfall event and could consider the aspects of soil, terrain, landcover, cultivation condition and effective reservoir capacity of each basin effectively through the results. Therefore, these quantitative sediment concentration data could be used to estimate the potential of high density turbid water for reservoir and applied with effective tools for the management of reservoir.

Geomorphic development of the Jeogchung·Chogye Basin and inner alluvial fan, Hapcheon, South Korea (합천 적중·초계분지와 분지 내 선상지 지형발달)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.225-239
    • /
    • 2016
  • The Jeogchung Chogye Basin shows perfect basin formation surrounded with divides, excluding outlet where Sannae River combining various small rivers escapes the basin. High mountains distribute at southwestern, southern and southeastern divides of the basin consisting of hornfels, while hilly mountains are found at northern divide consisting of sedimentary rock. Alluvial fans and flood plains occupy bottom of the basin. While extensive alluvial fans are found at the front of southern divide where rivers with large drainage areas rise, alluvial fans toward eastern and western divides become small due to low elevation of divides. Flood deposits by Hwang River are attributed to development for most of flood plains at northern part of the basin. The basin seems to be developed not by differential erosion or meteorite impact, but by bedrock weathering along lineament or fault lines by ground motion.

  • PDF

Influence Analysis for Natural River Bed with Dam Construction (댐 건설이 하류하천 하상에 미치는 영향 분석)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.715-723
    • /
    • 2012
  • The Hoelyongpo in the Naeseong River as tributary basin of the Nakdong River is broadly well-known a tourist attraction, which is made of sandy beach, and is called "Island of Inland". But Construction of the Dam was planned at upstream of river. In other words, an influx of sediment is blocked from upstream of river. In this situation, through sediment discharge coming from tributary of the Naeseong river, the whether to go ahead of sand beach of the Hoelyongpo is analyzed by using 1-D and 2-D model. The sediment discharge is estimated through ratio raw with basin area, and the instream flow requirement of river coming from dam and the flow rate and sediment coming from tributary are inputted for model. The 1-D model uses HEC-6 and the 2-D model uses SMS(RMA2 and SED2D). The analysis using the HEC-6 is performed from cross section data 10 year ago to the present cross section. Consequently, Yang equation presenting similar result to the present cross section data is determined, using this, the prediction is conducted for the cross section after 20 years. The 2-D analysis is conducted for the present cross section data. The value of distinction between a deposition and erosion with the results presented in the 1, 2-D models is occur, however, the appearance between the deposition and the erosion is similar.

Soil Erosion and Environmental Change in Central Mexico (멕시코 중부의 토양 침식과 고환경 변화)

  • Park, Jung-Jae
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.1
    • /
    • pp.17-30
    • /
    • 2009
  • Paleostudies using lake sediment are essential to reconstruct environmental history of cental Mexico, where few documents on ancient civilizations and the colonial period exist. This study aims to reveal changes in the soil erosion rates through the calculation of sediment influx into the lake. The calculation is based on different kinds of chronologies and LOI. Sediment influx and dates for important events could be obtained in great detail through various chronological methods. Results show that corn agriculture was the most important reason to degrade the environmental status of the lake basin and European cattle raising was not much influential within the lake basin at least. It was possible to reveal a lot of recent environmental changes in detail, because the lake sediment used for this study has a very high sedimentation rate. Also, due to an accurate chronological framework, fundamental problems with the sediment were solved and reliable results could be produced.

The Ceomorphic Development of Alluvial Fans in Cheongdo Basin, Gyeongsangbuk-do( Prevince), South Korea (경북 청도분지의 선상지 지형발달)

  • Hwang Sang-Ill
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.514-527
    • /
    • 2004
  • We investigated the distribution and geomorphic development of alluvial fans at Cheongdo- and Hweyang-eup(town) in the Cheongdo Basin, Gyeongsangbuk-do(Province) of Korea. The alluvial fans of study area are formed confluently to the E-W direction at the northern slope of the Mt. Namsan(840 m). They are classified into Higher surface, Middle surface, and Lower surface according to a relative height to a river bed. And the older alluvial fan is, the deeper gravel in the stream deposits is weathered. The magnitude of each surface composing of confluent fans is related to that of the drainage basin. So called fan-basin system of magnitude on the study area is on the positive(+) relation in the study area. The large fans over 1km in radius are found on the basin of andesite rock which is resistant to the weathering and erosion. Moreover there is no tectonic movement in the basin. It means the most important element influenced on the fan formation is not tectonic movement, but the Quaternary climatic change, which is the periglacial climate alternating glacial and interglacial stages during the Quaternary. Therefore alluvial fans would distribute in Korea overall influenced by the Quaternary climatic change.

Properties of Channel and Evolutions of Fluvial Terraces in Odae River (오대천의 특성과 하안단구의 형성과정)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.224-239
    • /
    • 2009
  • This study analyzes the properties of fluvial landforms in the upper and lower reaches and investigates the evolutions of stream and fluvial terrace in the Odae river basin. The lower basin of the river that consist of sedimentary rocks resistant to weathering and erosion processes shows higher altitude, relief and slope than the upper basin that consist of granite less resistant to weathering and erosion processes. The average width of river valley at the lower reaches is one-third to the upper reaches and the average width of river channel at the lower reaches is narrower than at the upper reaches. Based on the OSL age dating, the fluvial terrace T1 formed at the temperature-rising period during the late MIS 2 and T2 formed at the middle MIS 3, interstadial period during the last glacial period. Based on the these results, the average incision rates of Odae river are calculated as 0.205m/ka and 0.269m/ka at the upper granite area and lower sedimentary rocks area, respectively.

Evaluation of Soil Erosion in Small Mountainous Watersheds Using SWAT Model: A Case Study of the Woldong Catchment, Anseong (SWAT을 이용한 최상류 소유역 토양침식 평가: 안성 월동저수지 유역을 대상으로)

  • Lim, Young Shin;Byun, Jongmin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.13-33
    • /
    • 2021
  • Successful sediment management at the watershed scale requires an understanding of the erosion, transport and sedimentation processes at the specific site scale. However, studies on the sediment runoff characteristics in a small uppermost watershed, which serves as a sediment supply function, are very rare. Therefore, this study attempted to investigate the fluctuations in major sediment supply areas and sediment runoff in the uppermost mountain small watershed, and for this purpose, ArcSWAT (Soil and Water Assessment Tools with GIS interface) was applied to the Woldong reservoir catchment located in Gosam-myeon, Anseong-si, Gyeonggi-do. The model results were manually calibrated using the monitoring data of the Woldong reservoir sedimentation rate from 2005 to 2007. It was estimated that annual average of 34.4 tons/year of sediment was discharged from the Woldong reservoir basin. This estimate almost coincided with the monitoring data of the Woldong reservoir during the low flow period but tended to be somewhat underestimated during the high flow period. Although the SWAT model does not fully reflect the erosion process of gully and in-channel, this underestimation is probably due to the spatial connectivity of sediment transport and the storage and reactivation of the sediment being transported. Most of the forested hillslopes with a well-developed organic horizon were evaluated as having a low risk of erosion, while the places with the highest risk of erosion were predicted to be distributed in the logged area with some weeds or shrubs (classified as pasture) with relatively steeper slopes, and in the bare land. The results of this study are expected to be useful in developing strategies for sediment control and reservoir management.

A Comparative Analysis of Annual Surface Soil Erosion Before and After the River Improvement Project in the Geumgang Basin Using the RUSLE (RUSLE을 활용한 금강 수변지역의 하천정비사업 전·후의 연간 표토침식량 변화 비교분석)

  • Kim, Jeong-Cheol;Choi, Jong-Yun;Lee, Sunmin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1351-1361
    • /
    • 2019
  • In this study, the annual surface soil erosion amount of before (2007 year) and after (2015 year) the river improvement projects were calculated using RUSLE (Revised Universal Soil Loss Equation) in the Geumgang basin (Daecheong-Dam to Geumgang Estuary-Bank). After the results were classified into five classes, the results were compared and analyzed with the results of the change in the land cover. In order to generate each factor of RUSLE, various spatial information data, such as land cover maps for 2007 and 2015 years, national basic spatial information, soil map, and average annual precipitation data were utilized. The results of the analysis are as follows: 1) annual surface soil erosion in the study area increased the area of class 1 in 2015 years compared to 2007, 2) the area of class 2, 3 and 5 decreased, 3) the area of class 4 increased. It is believed that the average annual amount of surface soil erosion decreased in most areas due to the reduction of annual average precipitation, the formation of ecological parks, the expansion of artificial facilities, and the reduction of illegal farmland.

Geotechnical Characteristics of Cut Slope in Tertiary Jungja Bain, Ulsan area (울산지역 제3기 정자분지의 도로사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jung-Yup;Rhee, Jong-Hyun;Park, Sung-Kyu;Kim, Kwan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.107-112
    • /
    • 2005
  • Road is built continuously along with development of industry and cut slope is happened necessarily in road construction. Geoengineers are executing cut slope stability analysis considering various cut slope condition such as topography, geology, hydraulic condition and so on. The Tertiary Jungja Basin is located in the southeastern coastal area of the Korea Peninsula. Jungja Basin area is created by geotectonic movement of the plate after Early Miocene epoch. The northwestern and southwestern boundary of the basin is fault zone. The Basement rock is hornfels (Ulsan Formation). Basin-fills consist of extrusive volcanic rock(Tangsa Andesites), unconsolidated fluviatile conglomerate(Kangdong Formation) and shallow brackish-water sandstone(Sinhyun Formation). The characteristics of cut slopes in this area is different with cut slopes in the other site. Soil layers in this area is unconsolidated sediments and is not formed the weathering and erosion of the rock. So, the depth of soil layer is very thick. Faults of this area are northwest-southeast and northeast-southwest direction. Expandible clay mineral as smectite, chlorite et al. detected from fault gouge using XRD. Therefore, Jungja Basin area must consider the characteristics of the faults and soil layers thickness necessarily cut slopes stability analysis.

  • PDF