• Title/Summary/Keyword: ergodic

Search Result 162, Processing Time 0.025 seconds

Characterization of Effective Capacity in Antenna Selection MIMO Systems

  • Lari, Mohammad;Mohammadi, Abbas;Abdipour, Abdolali;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.476-485
    • /
    • 2013
  • In this paper, the effective capacity of a multiple-input multiple-output (MIMO) system in two different cases with receive antenna selection (RAS) and transmit antenna selection (TAS) schemes is investigated. A closed-form solution for the maximum constant arrival rate of this network with statistical delay quality of service (QoS) constraint is extracted in the quasi-static fading channel. This study is conducted in two different cases.When channel state information (CSI) is not available at the MIMO transmitter, implementation of TAS is difficult. Therefore, RAS scheme is employed and one antenna with the maximum instantaneous signal to noise ratio is chosen at the receiver. On the other hand, when CSI is available at the transmitter, TAS scheme is executed. In this case, one antenna is selected at the transmitter. Moreover, an optimal power-control policy is applied to the selected antenna and the effective capacity of the MIMO system is derived. Finally, this optimal power adaptation and the effective capacity are investigated in two asymptotic cases with the loose and strict QoS requirements. In particular, we show that in the TAS scheme with the loose QoS restriction, the effective capacity converges to the ergodic capacity. Then, an exact closed-form solution is obtained for the ergodic capacity of the channel here.

Antenna Placement Designs for Distributed Antenna Systems with Multiple-Antenna Ports (다중 안테나 포트를 장착한 분산 안테나 시스템에서의 안테나 설계 방법)

  • Lee, Changhee;Park, Eunsung;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.865-875
    • /
    • 2012
  • In this paper, we optimize antenna locations for a distributed antenna system (DAS) with distributed antenna (DA) ports equipped with multiple antennas under per-DA port power constraint. Maximum ratio transmission and scaled zero-forcing beamforming are employed for single-user and multi-user DAS, respectively. Instead of maximizing the cell average ergodic sum rate, we focus on a lower bound of the expected signal-to-noise ratio (SNR) for the single-cell scenario and the expected signal-to-leakage ratio (SLR) for the two-cell scenario to determine antenna locations. For the single-cell case, optimization of the SNR criterion generates a closed form solution in comparison to conventional iterative algorithms. Also, a gradient ascent algorithm is proposed to solve the SLR criterion for the two-cell scenario. Simulation results show that DAS with antenna locations obtained from the proposed algorithms achieve capacity gains over traditional centralized antenna systems.

Channel Capacity of BLAST based on the Zero-Forcing criterion (Zero-Forcing 기반의 BLAST 채널 용량)

  • Lee, Heun-Chul;Kim, Hee-Jin;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.34-41
    • /
    • 2008
  • In this paper, we present an asymptotical analysis of channel capacity of Bell labs layered space-time (BLAST) architectures based on a zero-forcing (ZF) criterion in the sense of signal-to-noise ratio (SNR). We begin by introducing a new relationship related to multi-input multi-output (MIMO) channel capacity. We prove that Diagonal Bell Labs Space-Time (DBLAST) attains the lower bound for MIMO channels when interference nulling is carried out based on the ZF-criterion. An exact closed-form expression for the probability density function of the channel capacity is analyzed. Based on the asymptotic behavior of the channel capacity of each layer, closed-form expressions for the asymptotic ergodic capacity are derived for BLAST. Based on the analysis presented in this paper, we gain an insight on the channel capacity behavior for a MIMO channel. Computer simulation results have verified the validity and accuracy of the proposed analysis for a wide range of antenna array sizes.

Text Independent Speaker Verficiation Using Dominant State Information of HMM-UBM (HMM-UBM의 주 상태 정보를 이용한 음성 기반 문맥 독립 화자 검증)

  • Shon, Suwon;Rho, Jinsang;Kim, Sung Soo;Lee, Jae-Won;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.171-176
    • /
    • 2015
  • We present a speaker verification method by extracting i-vectors based on dominant state information of Hidden Markov Model (HMM) - Universal Background Model (UBM). Ergodic HMM is used for estimating UBM so that various characteristic of individual speaker can be effectively classified. Unlike Gaussian Mixture Model(GMM)-UBM based speaker verification system, the proposed system obtains i-vectors corresponding to each HMM state. Among them, the i-vector for feature is selected by extracting it from the specific state containing dominant state information. Relevant experiments are conducted for validating the proposed system performance using the National Institute of Standards and Technology (NIST) 2008 Speaker Recognition Evaluation (SRE) database. As a result, 12 % improvement is attained in terms of equal error rate.

A Stability Issue on Controlled ALOHA System with Capture Channel (신호 포획현상을 가지는 알로하 시스템의 안정성 고찰)

  • 곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1855-1869
    • /
    • 1993
  • For the traditional ALOHA system without capture, the Markov chain obtained using the number of backlogged users at each slot if shown to be non-ergodic. So the infinite population ALOHA with fixed retransmission probabilities is unstable for any choice of the arrival rates and retransmission probabilities. The capture ALOHA system of also shown to be unstable for any arrival rate unless it has perfect. In this paper, we study a stabilization policy for capture ALOHA system that controls the retransmission probabilities and prove the stability of its multidimensional Markovian model by empolying a continuous Lyapunov function, and thus identify the stability region. We also study a delay performance through computer simulation th show the stability for any input rate below the maximum achievable channel throughput.

  • PDF

Non-Gaussian analysis methods for planing craft motion

  • Somayajula, Abhilash;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.293-308
    • /
    • 2014
  • Unlike the traditional displacement type vessels, the high speed planing crafts are supported by the lift forces which are highly non-linear. This non-linear phenomenon causes their motions in an irregular seaway to be non-Gaussian. In general, it may not be possible to express the probability distribution of such processes by an analytical formula. Also the process might not be stationary or ergodic in which case the statistical behavior of the motion to be constantly changing with time. Therefore the extreme values of such a process can no longer be calculated using the analytical formulae applicable to Gaussian processes. Since closed form analytical solutions do not exist, recourse is taken to fitting a distribution to the data and estimating the statistical properties of the process from this fitted probability distribution. The peaks over threshold analysis and fitting of the Generalized Pareto Distribution are explored in this paper as an alternative to Weibull, Generalized Gamma and Rayleigh distributions in predicting the short term extreme value of a random process.

ON THE LARGE DEVIATION FOR THE GCF𝝐 EXPANSION WHEN THE PARAMETER 𝝐 ∈ [-1, 1]

  • Zhong, Ting
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.835-845
    • /
    • 2017
  • The $GCF_{\epsilon}$ expansion is a new class of continued fractions induced by the transformation $T_{\epsilon}:(0, 1]{\rightarrow}(0, 1]$: $T_{\epsilon}(x)={\frac{-1+(k+1)x}{1+k-k{\epsilon}x}}$ for $x{\in}(1/(k+1),1/k]$. Under the algorithm $T_{\epsilon}$, every $x{\in}(0,1]$ corresponds to an increasing digits sequences $\{k_n,n{\geq}1\}$. Their basic properties, including the ergodic properties, law of large number and central limit theorem have been discussed in [4], [5] and [7]. In this paper, we study the large deviation for the $GCF_{\epsilon}$ expansion and show that: $\{{\frac{1}{n}}{\log}k_n,n{\geq}1\}$ satisfies the different large deviation principles when the parameter ${\epsilon}$ changes in [-1, 1], which generalizes a result of L. J. Zhu [9] who considered a case when ${\epsilon}(k){\equiv}0$ (i.e., Engel series).

Simulation Models for Investigation of Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.765-773
    • /
    • 2008
  • Spatial correlation is a result of insufficient antenna spacing among multiple antenna elements, while temporal correlation is caused by Doppler spread. This paper compares the effect of spatial and temporal correlation in order to investigate the performance of multiuser scheduling algorithms in multiple-input multiple-output (MIMO) broadcast channels. This comparison includes the effect on the ergodic capacity, on fairness among users, and on the sum-rate capacity of a multiuser scheduling algorithm utilizing statistical channel state information in spatio-temporally correlated MIMO broadcast channels. Numerical results demonstrate that temporal correlation is more meaningful than spatial correlation in view of the multiuser scheduling algorithm in MIMO broadcast channels. Indeed, the multiuser scheduling algorithm can reduce the effect of the Doppler spread if it exploits the information of temporal correlation appropriately. However, the effect of spatial correlation can be minimized if the antenna spacing is sufficient in rich scattering MIMO channels regardless of the multiuser scheduling algorithm used.

  • PDF

An Analysis of Panel Count Data from Multiple random processes

  • Park, You-Sung;Kim, Hee-Young
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.265-272
    • /
    • 2002
  • An Integer-valued autoregressive integrated (INARI) model is introduced to eliminate stochastic trend and seasonality from time series of count data. This INARI extends the previous integer-valued ARMA model. We show that it is stationary and ergodic to establish asymptotic normality for conditional least squares estimator. Optimal estimating equations are used to reflect categorical and serial correlations arising from panel count data and variations arising from three random processes for obtaining observation into estimation. Under regularity conditions for martingale sequence, we show asymptotic normality for estimators from the estimating equations. Using cancer mortality data provided by the U.S. National Center for Health Statistics (NCHS), we apply our results to estimate the probability of cells classified by 4 causes of death and 6 age groups and to forecast death count of each cell. We also investigate impact of three random processes on estimation.

  • PDF

Explicit integration algorithm for fully flexible unit cell simulation with recursive thermostat chains (순환적으로 결합되는 정온기들을 갖는 $N{\sigma}T$ 분자동역학 전산모사에 적용한 외연적 적분기법)

  • Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.512-517
    • /
    • 2007
  • In the previous development of the recursive thermostat chained fully flexible cell molecular dynamics simulation, implicit time integration method such as generalized leapfrog integration is used. The implicit algorithm is very much complicated and not easy to show time reversibility because it is solved by the nonlinear iterative procedure. Thus we develop simple, explicit symplectic time integration formula for the recursive thermostat chained fully flexible unit cell simulation. Uniaxial tension test is performed to verify the present explicit algorithm. We check that the present simulation satisfies the ergodic hypothesis for various values of fictitious mass and coefficient of multiple thermostat system. The proposed method should be helpful to predict mechanical and thermal behavior of nano-scale structure.

  • PDF