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Abstract

In this paper, we present an asymptotical analysis of channel capacity of Bell labs layered space-time (BLAST)
architectures based on a zero-forcing (ZF) criterion in the sense of signal-to-noise ratio (SNR). We begin by introducing
a new relationship related to multi-input multi-output (MIMO) channel capacity. We prove that Diagonal Bell Labs
Space-Time (DBLAST) attains the lower bound for MIMO channels when interference nulling is carried out based on the
ZF-criterion. An exact closed-form expression for the probability density function of the channel capacity is analyzed.
Based on the asymptotic behavior of the channel capacity of each layer, closed-form expressions for the asymptotic
ergodic capacity are derived for BLAST. Based on the analysis presented in this paper, we gain an insight on the channel
capacity behavior for a MIMO channel. Computer simulation results have verified the validity and accuracy of the
proposed analysis for a wide range of antenna array sizes.

Keywords: Channel Capacity, multi-input multi-output, (MIMO) systems,
Diagonal Bell Labs layered space-time (DBLAST), Zero-Forcing (ZF) criterion.
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I. Introduction

In recent years, the use of multiple antennas at
both  transmitter and
communication links has been shown to have the
potential of achieving extraordinary bit rates' ™%,
The layered space-time architecture suggested in [3]

receiver in  wireless
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provides extremely high spectral efficiencies without
incurring any penalty in power or bandwidth. More
recently, the optimality of the layered space-time
concept has been proven in [4] and [5] in terms of
channel capacity.

The channel capacity plays a central part in the
design and analysis of multi~input multi-output
(MIMO) systems. The
capacity the maximum mutual information
averaged over all states of time-varying channels?.
This ergodic capacity can be achieved using an

communication ergodic

is

adaptive transmission policy where the power and
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data rate varv depending on the instantaneous
channel state. Other
time-varying channels

and/or receiver channel

capacity  definitions  for
with perfect transmitter
state information (CSD
include outage capacity and minimum-rate capacity
© We consider a rich scattering flat fading MIMO
environment where the complex valued propagation
coefficients between all pairs of transmitter and
receivers are statistically independent, and the
charmel matrix has full rank. To analytically
evaluate these capacities, one needs to find the
distribution of channel capacity. Without the
distribution, these capacities are evaluated only by
statistical simulations for specific channel models. In
this case, it is difficult to analyze the effect of
system parameters such as the number of transmit
and receive antennas and/or signal-to-noise ratio
(SNR).

In this paper introduce an important
equivalence related to the channel capacity of Bell
Labs Space-Time (BLAST) based on a zero—forcing
(ZF) criterion (BLAST-ZF). We prove that the
lower bound presented in [1] is equal to the capacity
of the Diagonal Bell Labs Space-Time (D-BLAST)
architecture when interference nulling is carried out
based on the ZF-criterion. This remarkable result
allows a simple derivation of closed-form formulas
for the ergodic capacity. We provide a closed-form
expression for the ergodic capacity. This expression
is then used to study the influence of system
parameters such as the number of antennas and
SNR on capacity. From this, we obtain the optimal
number of antennas at the transmitter and recejver
for a given total number of antennas in terms of

we

channel capacity.

The remainder of this paper is organized as
follows: In Section II, we show that BLAST-ZF
attains the lower bound for MIMO channels and
present the exact pdf of the channel capacity of
each layer in BLAST. In Section I, we derive an
asymptotic closed-form formula of the ergodic
capacity of BLAST. Finally, the paper is terminated
with conclusions in Section V.

(9%)
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11. Exact Probability Density Function Of
Channel Capacity

In this section, we consider a MIMO system with
N transmit and M receive antennas. Let us define
the N-dimensional complex transmitted signal vector
x, and the M-dimensional complex received signal
vector y. Then the received signal can be written as

y=Hx+n (L
where
hyg - hyy LG
H=|hh,-~hy]={ { ~ i [n=|:
hy, -+ byy Ty,

Here h, denotes the ith column of the channel
matrix H. We assume that the additive noise terms
identically-distributed

complex Gaussian with variance o>. The channel

in n are independent and

coefficient hy of H represents the path gain from
the transmit antenna i to the receive antenna j. The
path gains are modeled as samples of independent
complex Gaussian random variables with variance
05 per dimension. This choice models a Rayleigh
H
assumed to be known perfectly at the receiver only.

fading environment. The channel matrix is
In this "case, in order to achieve the maximum
capacity, the transmit power needs to be divided
equally among all transmit antennas’”.

We will limit our attention to the case where
N< M Analysis of the channel capacity for
D-BLAST has been presented [5]. FEach

substream of D-BLAST experiences a periodically

in

varying SNR. In this case, the capacity of a
periodically varying channel with the channel state
information known only to the receiver can be
attained with a single code, resulting in the full

capacity[s‘].

N
2 log, 1+ SNR,,)

n=]

where SNR, indicates the output SNR of the nth

antenna’s transmission when interference nulling is
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each layer with N = M = 4.

performed by combining the received signals based
on the ZF-criterion.

We begin by introducing the following statistically
equivalent equations

N N
Y log,(1+SNR,) DY) logy(1+p/N)xs,
n=1 C k=M-N+1
2

where X3, is a unit variance chi-square random
variable with Zk degrees of freedom and p denotes
the average received power to noise ratio at each
receiver. Here we refer to two random variables x;
and x; with the same statistics (e, fu(x) = fAx))
as being statistically equivalent. The equivalence in
(2) shows that BLAST-ZF attains the lower bound
in [1]. The proof of the above equivalence is
illustrated in Appendix. In this paper, we will
derive closed-form expressions for the ergodic
capacity of BLAST-ZF based on the equivalence.

We define the nth layer channel capacity as
follows C, (N, M, p) as

C,, (N, M, p) = logy(1+ (p/ N)X3 (41— w4 n)/2) )

where X3, is a chi-squared random variable with

2k degrees of freedom. Note that E [X2 ] is equal
to Zk.
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Combining (2) and (3), we obtain the channel
capacity C.(N, M,p) of the layered space-time
architecture with N transmit and M receive antenna

as

N
C,(N, M, p) = Y C, (N, M, p)

n=1
M
= Y, log,(1+(p/N)X3,/2)
k= M-N+1

Here C,(N, M, p) is a random variable dependent
on X2,. The chi-squared distribution with 2k
degrees of freedom is a result of evaluating the
gamma distribution with a=% and A=1/2. It
follows that the pdf of X2, is given by [7]

()"

2 (k=1) _(-z)

(4)
fxgk($)=‘(mw €

,z>0

From the dfinition C, (&, M, p), the cumulative
distribution function (cdf) of C,(V, M, p)
obtained as

is

Fo (w,a (€)= P[C, (N, M, p) < c]

1

:P X22(M—N+n)<:(2c—1)
P

(5)

where p= p/2N.
Differetiating (5) with respect to ¢, the pdf of
C,(N,M, p) can be derived as
1 21n2

Fo (MM o)) =fys, (i(zc -1) >

c(zc_l)M—N+n—le_

In2
(2p)M~ ¥+ (M~ N+n—1)!

L(er-1)
2p

(6)

Notice that the above pdf is derived for the
channel capacity of the nth layer, C, (&, M, p) in a
BLAST system with N transmit and M receive
antennas and p= p/2N. Then, the ergodic capacity
E[C,(N,M,p)]= ZN_,E[C,(N,M,p)] can be
obtained using C,,(V, M, p) for n=1,-:-,N.

However, deriving the true distribution of
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C.(N, M, p) is difficult because of the complicated
nature of f, (v, ,)(c) in (6). Instead, we focus on
the asymptotic statistical behavior of C,(V, M, p).

shows the true density function
fo (v pple) for N=M=4. We can sce that as p

Figure. 1.

increases, the shape of the density function remains
unchanged. Based on this observation, we will
present the asymptotic analysis of the channel
capacity in the sense of SNR in the following
sections.

II. Closed—Form Formula For Asymptotic
Ergodic Capacity

In this section, we proceed to estimate the channel
capacity C,{N, M, p). For high SNRs, the capacity
expression C, (N, M, p) = log,(1+ p/ N)X}./2) can

be approximated by

671 (N7 M, P) = 10%2(1 + (P/N)Xg(,uf N+n)/2)
= log, (p) +log, X% (M~ N+n) (7
= logy (P)+ Ty wen

where I', = log,X2,. Here I'y,_ .., accounts for

obtained by
subtracting the effect of p. This approximate value
is lower than the actual capacity. Note that

an(N,M,p)converges to C,(V, M, p) for high p.

the nth layer channel capacity

HA123 37

After some straightforward algebraic manipulations in
Equations (4)-(6), the pdf of I', can be obtained as

fr.le) = --(7$—21—)—2d“e_32cfor —00 << ®)

The pdf in (8 is plotted in Fig. 2. Note that the
curves in Fig. 1 can be asymptotically obtained by
shifting the plots in Fig. 2 by log,(p), as can be
seen in (7).

The mean of C,(N,M,p) in (7) can be
completely evaluated from (8). In what follows, we
present a closed—form expression of the ergodic
capacity by computing the characteristic function of
equation (8).

By definition, the characteristic function of (8) is
computed as [7]

@Fk(w)=/‘ ffk(.’c)ejwdx

) 1l
— \/m 1n2,___2117k6 Qzeijdx
—w 28 (k— 1)

_ Jw
=0+ =g ?

(w)

Ly

Therefore, by induction, we have

ePFk(w)z(lJr(k—_j%—ﬁ)--- (1 hlg)%( )

where

L

* In2 T -

@,«l(w):fﬁsz 27 v g
Also, the moment theorem states that the

moments of I, are given by [7]

cf"@Fk(w)

mio L

w=0

From the above, the mean FE[I}] can be

represented as

B 1 d"@rk(w)
o dw™

= B[]+ (

(L]

=0

m+.‘.+ %)@Fk(?ﬂ)lw=0 (9)

Z_

] 1n2 =y m
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1 d@rl(TU)
where E[I] denotes —
i dw

have used the fact that ¢, (0)=1.
E|I';] can be expressed as [8]

hw =0, Here we

y

In2
1 &l
h'm 10g2 21) — —5' ;T{;}

Ell)=1-

where ~v=0.57721566--- is called the FEuler-

Mascheroni constant™™.
Combining (7) and (9), we obtain the asymptotic
ergodic capacity of the nth layer as

E[C, (N, 84, p) | =10g, (§) + E[Tp_ys]
1 M—-N+n—1 1

)

In2

=10€2(;)+E[111]+ m

(10)

Consequently, for a general MIMO system with N
transmit and M receive antennas (N < M), the
asymptotic ergodic capacity of BLAST is

EC,(V, M p)]= f:,E[éz(MMP)]
1 N M-Ntn-1 1
= Nlog, (p/2N) + NE[I; ] + —32 -
= m=1

(10)

T T
— Exact
— — Asymptotic

#87e31q] Layoude; oTpobam

[
olzngx 8% E[C,(N,M,p)]| 2 H2H
2 E[C,(N,M,p)] 2l BT
Comparison between exact ergodic channel
capacity E[C,(N,M,p)] and its asymptotic
capacity E[C,(N,M, p)].
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The ergodic capacity is also computed in a
general form in [9} for Ricean MIMO channel.

To verify the asymptotic ergodic capacity equation
(10), the derived asymptotic capacity has been
compared with the exact capacity from simulations.
Fig. 3 compares the BLAST ergodic capacity and its
asymptotic capacity for various numbers of the
transmit and receive antennas. The solid lines are
the actual ergodic capacities evaluated using Monte
Carlo simulations, while the dashed lines represent
the asymptotic capacities. From this figure we
observe that the derived asymptotic ergodic capacity
results are indistinguishable from the true BLAST
ergodic capacity for SNR higher than 20 dB.

Table 1 contains the incremental ergodic channel
capacity  corresponding to additional transmit and
receive antennas. The table shows how the capacity
increases as the number of antennas at either the
transmit or receive side grows. Thus, the gross
channel capacity for the N by M BLAST can be
obtained by summing all elements within the
upper-left M by N block. From this table, we can
gain an insight on the capacity contribution incurred

E 1. TxRx oHEjL o 2 oj2uEy 82 gt
Table 1. Contribution to ergodic capacity. with respect to
the number of transmit (column) and receive
antennas {row).
M N=1 2 3 4 5
1] Tog, (o/2N) lo%a(p/ZN) k’Sz(PﬁN) log,(p/2N] [ Tog,(p/2N)
— In; ~m3 Y] T Ing -5
T Tm) : ;
3 [/2RE) | JNE)
4 11/ (2)) [1/(2Ia(27) 1/h1(2) :
SI/ERE) [ ER ) [ JekE) | /RE) y
6T GR N T /aRE) TG TT/EREY T/ hE)
T En e /Ehe)) | VERh@) [ VERE) [Tk E)
2 2 G, (NMolMe| ciekst oLt sized| Cfgt
G, (Va2 B o5
Teble 2. Marginal gain of G, (N, M) over G, (N M)
for various antenna array sizes in bits/s/Hz.
r JN=1124344¢5I
M = B B N " -
2 1.4288 B
3 3.1120 | 0.1931 -
4 39536 | 1.9964 | -0.6578 .
5 45066 | 20101 12177 [ -1.3109 .
6 49154 | 35113 2.1795 06127 -1.841%
7 52382 | 39544 2.8149 1.6088 0.1161
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by each additional antenna. Denote G.{NM) and
Gnd N, M) as the transmit and receive capacity gain
resulting from increasing the number of antennas
form (NV,M) to (N+mn, M) (N, M)
(N, M+ n,), respectively. Then, we have

and o

_ 4
Gn‘(N,M)—-nt><(}og2(m)+E’[F1])
n, 1 2 M~ N—n 1
Mogz(l'l'z/:)'*-mngl mzzl K
and
( 1 E“: Min—1 1
G, (N M) =1 —
T 2 =M“N+n.m
The marginal gain of Gy - (N, M) over

GN,=1(M M) is given in Table 2 where the

marginal gain is defined as the capacity increase

difference (G, -, (N, M) — Gy (N, M))

For

example, in the case of (4,5) system, one additional
antenna at the transmitter and receiver side leads to
(55) and (46), respectively. In this case, putting one
more antenna at the receive side provides the
capacity increase of 1.3109 bits/s/Hz compared to the
case when one more antenna is employed to the
transmit side. Consequently, based on the analysis
listed in this table, the optimal antenna allocation for
transmit and receive sides can be determined.

IV. Conclusion

In this paper, we have shown that Diagonal Bell
Labs Space-Time attains the lower bound for MIMO
channels when interference nulling is carried out
based on the ZF criterion. Using this remarkable
result, we have obtained a closed-form expression
for the asymptotic ergodic capacity for layered
space-time architectures. Based on the derived
capacity expressions, we are able to acquire better
insight into the capacity analysis. Especially, the
optimal antenna allocation between the transmitter
and the receiver has been presented as a result of
our analysis.

(1000)
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APPENDIX

PROOF OF THE EQUIVALENCE IN (2)
In this section, we will show that the equation (2)
is statistically equivalent as follows:

N M
2 log, (1+ SNE,) 2 log, (1+ (p/ M)x3e)
n=1 k= M= N+
(11)

We will limit our attention to a practical case (N<
M) for the ZF equalization.

For analytical conveniences, we assume that the
BLAST detection operation proceeds from layer N to
1. Therefore, the ith layer has i~I interferences, and
then, from (1), the modified received signal can be
described as

y.z:ﬁ,i'l"nz[ hlhz“’ h,]xz-f-n

where x; is the i~/ dimensional undetected signal
vector and ﬁi denotes the corresponding M by i
channel matrix.

In this case, SNR; is obtained as

1

SNR, = — 7
‘ Ellgl?

(o/ V) (12)

where g; denotes the ith row of the ZF equalizer
matrix
- )
Equivalently, we have
= [GGH] i
= {(ﬁfﬁl)_l}u

As introduced in [5], H, is unitarily equivalent to an

el 13)

M by i matrix

Yoarkai-1y 0 0

0 ’Yg(M»l}kﬂr‘z) 0

: 0 : :

0 0 T aeivz) R

: : 0 0 YMoriv
0 - 0 0 0

0 0 0 0 0
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where both 7§j and kgj are chi-squared random
variables with Zj degrees of freedom.

Let us define the matrix D, = (H,7 H,) Then
D, is obtained as

Yrr Yorkoi-1) O 0
k2(i—1)72M’Y§(M—1) +k§(i—1) 0

0 0 :

0 0 . 0

: : Vi) TR (-iraks

0 0 kyYoprr—it2) 7§(M—i+l)+k§

which shows hat Det(D;) = I oy + 15
Also, the inverse of the square matrix D, can be
written as [10]

D;'= adj (D,)

Det(Dt)
where the adjoint matrix adj(D;) represents the

transpose of the cofactor matrix.
Then, (13) can be expressed as

C.

le”= [P, = 5oy

where the cofactor C,; denotes the determinant of
the matrix D, with the ith column and the ith row
discarded, ie., C; =Det(D,_,). It follows

Det(D;_,)
Det(D,) 4

1

f gl 2 =
(M—i+1)

where we use the fact that Cj;= Det(D,)
obtain '

SNR; = (p/ N)Vo(ar— i+ 1)
Consequently, we can rewrite the left-hand side of

(11) as

N N
2110g2(1 +SNR,) = Z log, (1 +P/N)7§(M—n+1))
n= n=1

)

n=M-N+1

log,1+(p/ N2,

which shows that (11) is statistically true.
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